DOI QR코드

DOI QR Code

Degradation analysis of SiC fiber at elevated temperature for dust filtering applications

분진필터링 적용을 위한 SiC 섬유의 고온 열화분석

  • Joo, Young Jun (Div. of Materials Engineering & Convergence Technology, Gyeongsang National Univ.) ;
  • Park, Cheong Ho (Div. of Materials Engineering & Convergence Technology, Gyeongsang National Univ.) ;
  • Khishigbayar, Khos-Erdene (Ceramic Fiber and Composite Material Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Cheol Jin (Research Institute of Green Energy Convergence Technology, Gyeongsang National Univ.)
  • 주영준 (경상대학교, 나노신소재융합공학과) ;
  • 박청호 (경상대학교, 나노신소재융합공학과) ;
  • 허스에르덴 (한국세라믹기술원, 세라믹 섬유 복합재 센터) ;
  • 김철진 (경상대학교, 그린에너지융합연구소)
  • Received : 2016.11.25
  • Accepted : 2017.01.26
  • Published : 2017.02.28

Abstract

SiC fiber can be used up to $1800^{\circ}C$ in both inert and air atmosphere without any problems such as melting and oxidation. SiC fibers can be applied to dust filtering processes as a bag filter at a high temperature above $700^{\circ}C$, which is far beyond the temperature range of currently available industrial bag filter. However the studies for the degradation of SiC fibers were still lacked in the harsh environment of steel industries and thermoelectric power plants. In this study, SiC fibers were reacted with steel dust and thermal power plant dust at a high temperature of $500^{\circ}C$ or higher, and the degraded shape of the fiber surface was observed by SEM. Also the degree of oxygen diffusion on the surface and inside of SiC fiber was analyzed by EDS.

SiC 섬유는 $1800^{\circ}C$까지 불활성과 공기 분위기에서 융해나 산화 문제 없이 사용할 수 있다. SiC 섬유는 분진 필터링 공정의 백필터로 상업화된 산업용 백 필터보다 훨씬 높은 온도인 $500^{\circ}C$ 이상의 온도에서 사용이 가능하다. 하지만 제강 산업과 화력발전소의 극한 환경에서 미세 분진과의 반응으로 인한 SiC 섬유의 열화에 대한 연구는 부족하다. 따라서 본 실험에서는 SiC 섬유를 제강 분진, 화력발전소 분진과 $500^{\circ}C$ 이상의 고온에서 반응시켜 섬유 표면의 열화된 형상을 SEM으로 관찰하고 섬유 표면 및 내부로의 산소 확산의 정도를 EDS로 분석하였다.

Keywords

References

  1. H.W. Park and Y.M. Jo, "Regulation standard of fine particles and control techniques of emission sources", J. Kor. Soc. Atmos. Env. 29 (2013) 486. https://doi.org/10.5572/KOSAE.2013.29.4.486
  2. M. Nifuku, T. Matsuda and H. Enomoto, "Resent development of standardization of testing methods for dust explosion in Japan", J. Loss Prevent. Proc. 12 (2000) 243.
  3. N. Mohurle and N.R. Thakare, "Analysis on fabric filtration material for pulse jet fabric filter", Int. J. Emg. Tech. Adv. Eng. 3 (2013) 603.
  4. M. Takeda and J.I. Sakimoto, "Thermal stability of the low-oxygen-content silicon carbide fiber, $Hi-Nicalon^{TM}$", Comp. Sci. Tech. 59 (1999) 813. https://doi.org/10.1016/S0266-3538(99)00012-3
  5. S. Yajima, Y. Hasegawa, K. Okamura and T. Matsuzawa, "Development of high tensile strength silicon fiber using an organosilicon polymer precursor", Nature 273 (1978) 525. https://doi.org/10.1038/273525a0
  6. H.Q. Ly, R. Taylor and R.J. Day, "Conversion of polycarbosilane (PCS) to SiC-based ceramic Part 1. Characterisation of PCS and curing products", J. Mat. Sci. 36 (2001) 4037. https://doi.org/10.1023/A:1017942826657
  7. M. Takeda, A. Urano, J.I. Sakamoto and Y. Imai, "Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S", J. Nucl. Mat. 258-263 (1998) 1594. https://doi.org/10.1016/S0022-3115(98)00223-2
  8. S. Yajima, Y. Hasegawa, J. Hayashi and M. limura, "Synthesis of continuous silicon carbide fiber with high tensile strength and high Young's modulus", J. Mat. Sci. 13 (1978) 2569.
  9. M. Takeda and Y. Imai, "Thermomechanical analysis of the low oxygen silicon carbide fibers derived from polycarbosilane", Cer. Eng. Sci. Proc. 14 (1993) 540.
  10. P.F. Becher, "Strength degradation in SiC and $Si_3N_4$ ceramics by exposure to coal slags at high temperatures", J. Mat. Sci. 19 (1984) 2805. https://doi.org/10.1007/BF01026956
  11. J.E. Marra, E.R. Kreidler, N.S. Jacobson and D.S. Fox, "Reactions of silicon-based ceramics in mixed oxidation chlorination environments", J. Am. Ceram. Soc. 71 (1988) 1067. https://doi.org/10.1111/j.1151-2916.1988.tb05793.x
  12. C. Onneby and C.G. Pantano, "Silicon oxycarbide formation of SiC surfaces and at the $SiC/SiO_2$ interface", J. Vac. Sci. Technol. A 15 (1997) 1597. https://doi.org/10.1116/1.580951
  13. A. Guo, M. Rose, M. Modesti, J. Liu and P. Colombo, "Hierarchically structured polymer-derived ceramic fibers by electrospinning and catalyst-assisted pyrolysis", J. Eur. Ceram. Soc. 34 (2014) 549. https://doi.org/10.1016/j.jeurceramsoc.2013.08.025
  14. R.G. Munro and S.J. Dapkunas, "Corrosion characteristrics of silicon carbide and silicon nitride", J. Res. Natl. Inst. Stand. Technol. 98 (1993) 607. https://doi.org/10.6028/jres.098.040