DOI QR코드

DOI QR Code

Peripheral Cellular Mechanisms of Artemin-induced Thermal Hyperalgesia in Rats

  • Kim, Hye-Jin (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Yang, Kui-Ye (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Lee, Min-Kyung (Department of Dental Hygiene, Dong-Eui University) ;
  • Park, Min-Kyoung (Department of Dental Hygiene, Kyung-Woon University) ;
  • Son, Jo-Young (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ju, Jin-Sook (Department of Oral Physiology, School of Dentistry, Kyungpook National University) ;
  • Ahn, Dong-Kuk (Department of Oral Physiology, School of Dentistry, Kyungpook National University)
  • Received : 2017.01.19
  • Accepted : 2017.02.22
  • Published : 2017.03.31

Abstract

In the present study, we investigated the role of peripheral ionotropic receptors in artemin-induced thermal hyperalgesia in the orofacial area. Male Sprague-Dawley rats weighting 230 to 280 g were used in the study. Under anesthesia, a polyethylene tube was implanted in the subcutaneous area of the vibrissa pad, which enabled drug-injection. After subcutaneous injection of artemin, changes in air-puff thresholds and head withdrawal latency time were evaluated. Subcutaneous injection of artemin (0.5 or $1{\mu}g$) produced significant thermal hyperalgesia in a dose-dependent manner. However, subcutaneous injection of artemin showed no effect on air-puff thresholds. IRTX ($4{\mu}g$), a TRPV1 receptor antagonist, D-AP5 (40 or $80{\mu}g$), an NMDA receptor antagonist, or NBQX (20 or $40{\mu}g$), an AMPA receptor antagonist, was injected subcutaneously 10 min prior to the artemin injection. Pretreatment with IRTX and D-AP5 significantly inhibited the artemin-induced thermal hyperalgesia. In contrast, pretreatment with both doses of NBQX showed no effect on artemin-induced thermal hyperalgesia. Moreover, pretreatment with H-89, a PKA inhibitor, and chelerythrine, a PKC inhibitor, decreased the artemin-induced thermal hyperalgesia. These results suggested that artemin-induced thermal hyperalgesia is mediated by the sensitized peripheral TRPV1 and NMDA receptor via activation of protein kinases.

Keywords

References

  1. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science. 1993;260:1130-1132. https://doi.org/10.1126/science.8493557
  2. Kotzbauer PT, Lampe PA, Heuckeroth RO, Golden JP, Creedon DJ, Johnson EM Jr, Milbrandt J. Neurturin, a relative of glial-cell-line-derived neurotrophic factor. Nature. 1996;384:467-470. doi:10.1038/384467a0
  3. Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO, Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M, Wang LC, Vandlen R, Moffat B, Klein RD, Poulsen K, Gray C, Garces A, Johnson EM Jr, et al. Persephin, a novel neurotrophic factor related to GDNF and neurturin. Neuron. 1998;20:245-253. https://doi.org/10.1016/S0896-6273(00)80453-5
  4. Baloh RH, Gorodinsky A, Golden JP, Tansey MG, Keck CL, Popescu NC, Johnson EM Jr, Milbrandt J. GFRalpha3 is an orphan member of the GDNF/neurturin/persephin receptor family. Proc Natl Acad Sci U S A. 1998;95:5801-5806. https://doi.org/10.1073/pnas.95.10.5801
  5. Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci. 2002;3:383-394. doi:10.1038/nrn812
  6. Andres R, Forgie A, Wyatt S, Chen Q, de Sauvage FJ, Davies AM. Multiple effects of artemin on sympathetic neurone generation, survival and growth. Development. 2001;128: 3685-3695.
  7. Baloh RH, Tansey MG, Lampe PA, Fahrner TJ, Enomoto H, Simburger KS, Leitner ML, Araki T, Johnson EM Jr, Milbrandt J. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron. 1998;21:1291-1302. https://doi.org/10.1016/S0896-6273(00)80649-2
  8. Paveliev M, Airaksinen MS, Saarma M. GDNF family ligands activate multiple events during axonal growth in mature sensory neurons. Mol Cell Neurosci. 2004;25: 453-459. doi:10.1016/j.mcn.2003.11.010
  9. Bennett DL, Boucher TJ, Michael GJ, Popat RJ, Malcangio M, Averill SA, Poulsen KT, Priestley JV, Shelton DL, McMahon SB. Artemin has potent neurotrophic actions on injured C-fibres. J Peripher Nerv Syst. 2006;11:330-345. doi:10.1111/j.1529-8027.2006.00106.x
  10. Jankowski MP, Rau KK, Soneji DJ, Anderson CE, Koerber HR. Enhanced artemin/$GFR{\alpha}3$ levels regulate mechanically insensitive, heat-sensitive C-fiber recruitment after axotomy and regeneration. J Neurosci. 2010;30:16272-16283. doi:10. 1523/JNEUROSCI.2195-10. 2010 https://doi.org/10.1523/JNEUROSCI.2195-10.2010
  11. Malin SA, Molliver DC, Koerber HR, Cornuet P, Frye R, Albers KM, Davis BM. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo. J Neurosci. 2006; 26:8588-8599. doi:10.1523/JNEUROSCI.1726-06.2006
  12. Lippoldt EK, Elmes RR, McCoy DD, Knowlton WM, McKemy DD. Artemin, a glial cell line-derived neurotrophic factor family member, induces TRPM8-dependent cold pain. J Neurosci. 2013;33:12543-12552. doi:10.1523/JNEUROSCI.5765-12.2013
  13. Elitt CM, McIlwrath SL, Lawson JJ, Malin SA, Molliver DC, Cornuet PK, Koerber HR, Davis BM, Albers KM. Artemin overexpression in skin enhances expression of TRPV1 and TRPA1 in cutaneous sensory neurons and leads to behavioral sensitivity to heat and cold. J Neurosci. 2006;26:8578-8587. doi:10.1523/JNEUROSCI.2185-06.2006
  14. Zhu H, Yu Y, Zheng L, Wang L, Li C, Yu J, Wei J, Wang C, Zhang J, Xu S, Wei X, Cui W, Wang Q, Chen X. Chronic inflammatory pain upregulates expression of P2Y2 receptor in small-diameter sensory neurons. Metab Brain Dis. 2015; 30:1349-1358. doi:10.1007/s11011- 015-9695-8
  15. Gangadharan V, Wang R, Ulzhofer B, Luo C, Bardoni R, Bali KK, Agarwal N, Tegeder I, Hildebrandt U, Nagy GG, Todd AJ, Ghirri A, Haussler A, Sprengel R, Seeburg PH, MacDermott AB, Lewin GR, Kuner R. Peripheral calciumpermeable AMPA receptors regulate chronic inflammatory pain in mice. J Clin Invest. 2011;121:1608-1623. doi:10.1172/JCI44911
  16. Akopian AN, Ruparel NB, Jeske NA, Patwardhan A, Hargreaves KM. Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends Pharmacol Sci. 2009;30:79-84. doi:10. 1016/j.tips.2008.10.008 https://doi.org/10.1016/j.tips.2008.10.008
  17. Tsuda M, Hasegawa S, Inoue K. P2X receptors-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain. J Neurochem. 2007;103:1408-1416. doi:10.1111/j.1471-4159.2007.04861.x
  18. Carlton SM, Coggeshall RE. Inflammation-induced changes in peripheral glutamate receptor populations. Brain Res. 1999;820:63-70. https://doi.org/10.1016/S0006-8993(98)01328-6
  19. Caterina MJ, Julius D. The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci. 2001; 24:487-517. doi:10. 1146/annurev.neuro.24.1.487 https://doi.org/10.1146/annurev.neuro.24.1.487
  20. Honore P, Wismer CT, Mikusa J, Zhu CZ, Zhong C, Gauvin DM, Gomtsyan A, El Kouhen R, Lee CH, Marsh K, Sullivan JP, Faltynek CR, Jarvis MF. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoro methyl- benzyl)-urea], a novel transient receptor potential type V1 receptor antagonist, relieves pathophysiological pain associated with inflammation and tissue injury in rats. J Pharmacol Exp Ther. 2005;314: 410-421. doi:10.1124/jpet.105.083915
  21. Jhaveri MD, Elmes SJ, Kendall DA, Chapman V. Inhibition of peripheral vanilloid TRPV1 receptors reduces noxious heat-evoked responses of dorsal horn neurons in naive, carrageenan-inflamed and neuropathic rats. Eur J Neurosci. 2005;22:361-370. doi:10.1111/j.1460-9568. 2005.04227.x
  22. Srebro DP, Vuckovic SM, Savic Vujovic KR, Prostran MS. Nitric oxide synthase modulates the antihyperalgesic effect of the NMDA receptor antagonist MK-801 on Carrageenaninduced inflammatory pain in rats. Tohoku J Exp Med. 2014;234:287-293. https://doi.org/10.1620/tjem.234.287
  23. Gong K, Kung LH, Magni G, Bhargava A, Jasmin L. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PLoS One. 2014;9:e95491. doi:10.1371/journal.pone. 0095491
  24. Kushnir R, Cherkas PS, Hanani M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology. 2011;61:739-746. doi:10.1016/ j.neuropharm. 2011.05.019
  25. Kim MJ, Lee SY, Yang KY, Nam SH, Kim HJ, Kim YJ, Bae YC, Ahn DK. Differential regulation of peripheral IL-$1{\beta}$ -induced mechanical allodynia and thermal hyperalgesia in rats. Pain. 2014;155:723-732. doi:10.1016/j.pain.2013.12.030
  26. Han SR, Yeo SP, Lee MK, Bae YC, Ahn DK. Early dexamethasone relieves trigeminal neuropathic pain. J Dent Res. 2010;89:915-920. doi:10.1177/0022034510374056
  27. Lee AR, Lim NH, Kim HJ, Kim MJ, Ju JS, Park MK, Lee MK, Yang KY, Ahn DK. Differential Role of Central GABA Receptors in Nociception of Orofacial Area in Rats. Int J Oral Biol. 2015;40:117-125. https://doi.org/10.11620/IJOB.2015.40.3.117
  28. Yang CS, Jung CY, Ju JS, Lee MK, Ahn DK. Intracisternal administration of mitogen-activated protein kinase inhibitors reduced IL-1beta-induced mirror-image mechanical allodynia in the orofacial area of rats. Neurosci Lett. 2005;387:32-37. doi:10.1016/j.neulet. 2005.07.019
  29. Jung CY, Choi HS, Ju JS, Park HS, Kwon TG, Bae YC, Ahn DK. Central metabotropic glutamate receptors differentially participate in interleukin-1beta-induced mechanical allodynia in the orofacial area of conscious rats. J Pain. 2006;7:747-756. doi:10.1016/j.jpain.2006.03.007
  30. Park CK, Kim K, Jung SJ, Kim MJ, Ahn DK, Hong SD, Kim JS, Oh SB. Molecular mechanism for local anesthetic action of eugenol in the rat trigeminal system. Pain. 2009;144: 84-94. doi:10.1016/j.pain.2009.03.016
  31. Park MK, Song HC, Yang KY, Ju JS, Ahn DK. Participation of peripheral P2X Receptors in Orofacial Inflammatory Nociception in Rats. Int J Oral Biol. 2011;36:143-148
  32. Kim MJ, Cho JH, Kim HJ, Yang KY, Ju JS, Lee MK, Park MK, Ahn DK. Botulinum Toxin Type A Attenuates Activation of Glial Cells in Rats Medullary Dorsal Horn with CFA-induced Inflammatory Pain. Int J Oral Biol. 2015;40:71-77. https://doi.org/10.11620/IJOB.2015.40.2.071
  33. Ikeda-Miyagawa Y, Kobayashi K, Yamanaka H, Okubo M, Wang S, Dai Y, Yagi H, Hirose M, Noguchi K. Peripherally increased artemin is a key regulator of TRPA1/V1 expression in primary afferent neurons. Mol Pain. 2015;11:8. doi:10. 1186/s12990-015-0004-7
  34. Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED, et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature. 2004;427:260- 265.doi:10.1002/(SICI) 1097-4547(19980215)51:4<417::AID-JNR1>3.0.CO;2-F
  35. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol. 2005;493:596-606. doi:10.1002/cne.20794
  36. Garcia-Martinez C, Humet M, Planells-Cases R, Gomis A, Caprini M, Viana F, De La Pena E, Sanchez-Baeza F, Carbonell T, De Felipe C, Perez-Paya E, Belmonte C, Messeguer A, Ferrer-Montiel A. Attenuation of thermal nociception and hyperalgesia by VR1 blockers. Proc Natl Acad Sci U S A. 2002;99:2374-2379. doi:10.1073/pnas.022285899
  37. Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K. VR1, but not P2X(3), increases in the spared L4 DRG in rats with L5 spinal nerve ligation. Pain. 2002;99: 111-120. https://doi.org/10.1016/S0304-3959(02)00067-2
  38. Urata K, Shinoda M, Honda K, Lee J, Maruno M, Ito R, Gionhaku N, Iwata K. Involvement of TRPV1 and TRPA1 in incisional intraoral and extraoral pain. J Dent Res. 2015; 94:446-454. doi:10.1177/ 0022034514565645
  39. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306-313. https://doi.org/10.1126/science.288.5464.306
  40. Naveilhan P, Baudet C, Mikaels A, Shen L, Westphal H, Ernfors P. Expression and regulation of GFRalpha3, a glial cell line-derived neurotrophic factor family receptor. Proc Natl Acad Sci U S A. 1998;95:1295-1300. https://doi.org/10.1073/pnas.95.3.1295
  41. Widenfalk J, Tomac A, Lindqvist E, Hoffer B, Olson L. GFRalpha-3, a protein related to GFRalpha-1, is expressed in developing peripheral neurons and ensheathing cells. Eur J Neurosci. 1998;10:1508-1517. https://doi.org/10.1046/j.1460-9568.1998.00192.x
  42. Orozco OE, Walus L, Sah DW, Pepinsky RB, Sanicola M. GFRalpha3 is expressed predominantly in nociceptive sensory neurons. Eur J Neurosci. 2001;13:2177-2182. https://doi.org/10.1046/j.0953-816x.2001.01596.x
  43. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765-1769. https://doi.org/10.1126/science.288.5472.1765
  44. Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003;97:1108-1116.
  45. Babb TL, Mikuni N, Najm I, Wylie C, Olive M, Dollar C, MacLennan H. Pre- and postnatal expressions of NMDA receptors 1 and 2B subunit proteins in the normal rat cortex. Epilepsy Res. 2005;64:23-30. doi:10.1016/j.eplepsyres. 2005.02.008
  46. Bleakman D, Alt A, Nisenbaum ES. Glutamate receptors and pain. Semin Cell Dev Biol. 2006;17:592-604. doi:10.1016/j.semcdb. 2006.10.008
  47. Jackson DL, Graff CB, Richardson JD, Hargreaves KM. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. Eur J Pharmacol. 1995;284: 321-325. https://doi.org/10.1016/0014-2999(95)00449-U
  48. Davidson EM, Coggeshall RE, Carlton SM. Peripheral NMDA and non-NMDA glutamate receptors contribute to nociceptive behaviors in the rat formalin test. Neuroreport. 1997;8:941-946. https://doi.org/10.1097/00001756-199703030-00025
  49. Park MK, Lee JH, Yang GY, Won KA, Kim MJ, Park YY, Bae YC, Ahn DK. Peripheral administration of NR2 antagonists attenuates orofacial formalin-induced nociceptive behavior in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2011; 35:982-986. doi:10. 1016/j.pnpbp.2011.01.018 https://doi.org/10.1016/j.pnpbp.2011.01.018
  50. Lee J, Saloman JL, Weiland G, Auh QS, Chung MK, Ro JY. Functional interactions between NMDA receptors and TRPV1 in trigeminal sensory neurons mediate mechanical hyperalgesia in the rat masseter muscle. Pain. 2012;153: 1514-1524. doi:10.1016/j.pain.2012.04.015
  51. Lee J, Chung MK, Ro JY. Activation of NMDA receptors leads to phosphorylation of TRPV1 S800 by protein kinase C and A-Kinase anchoring protein 150 in rat trigeminal ganglia. Biochem Biophys Res Commun. 2012;424:358-363. doi:10. 1016/j.bbrc.2012.07.008 https://doi.org/10.1016/j.bbrc.2012.07.008
  52. da Cunha JM, Rae GA, Ferreira SH, Cunha Fde Q. Endothelins induce ETB receptor-mediated mechanical hypernociception in rat hindpaw: roles of cAMP and protein kinase C. Eur J Pharmacol. 2004;501:87-94. doi:10.1016/j.ejphar.2004.08.004
  53. Dina OA, Chen X, Reichling D, Levine JD. Role of protein kinase Cepsilon and protein kinase A in a model of paclitaxel-induced painful peripheral neuropathy in the rat. Neuroscience. 2001;108:507-515. https://doi.org/10.1016/S0306-4522(01)00425-0
  54. Dina OA, Hucho T, Yeh J, Malik-Hall M, Reichling DB, Levine JD. Primary afferent second messenger cascades interact with specific integrin subunits in producing inflammatory hyperalgesia. Pain. 2005;115:191-203. doi:10.1016/j.pain.2005.02.028
  55. Jeske NA, Diogenes A, Ruparel NB, Fehrenbacher JC, Henry M, Akopian AN, Hargreaves KM. A-kinase anchoring protein mediates TRPV1 thermal hyperalgesia through PKA phosphorylation of TRPV1. Pain. 2008;138:604-616. doi:10.1016/j.pain.2008.02.022