DOI QR코드

DOI QR Code

Design of SONAR Array for Detection of Bottoming Cylindrical Objects

착저 원통형 물체 탐지를 위한 소나 어레이 설계

  • Kim, Sunho (School of Electronic Engineering, Soongsil University) ;
  • Jung, Jangwon (School of Electronic Engineering, Soongsil University) ;
  • On, Baeksan (School of Electronic Engineering, Soongsil University) ;
  • Im, Sungbin (School of Electronic Engineering, Soongsil University) ;
  • Seo, Iksoo (School of Electronic Engineering, Soongsil University)
  • 김선호 (숭실대학교 일반대학원 정보통신공학과) ;
  • 정장원 (숭실대학교 일반대학원 정보통신공학과) ;
  • 온백산 (숭실대학교 일반대학원 정보통신공학과) ;
  • 임성빈 (숭실대학교 전자정보공학부) ;
  • 서익수 (숭실대학교 전자정보공학부)
  • Received : 2016.10.27
  • Accepted : 2017.02.16
  • Published : 2017.03.25

Abstract

In the active SONAR system, various studies have been carried out to enhance the resolution of a received signal. In order to obtain higher resolution for detecting a bottoming cylindrical object, the design of a planar array for SONAR is investigated in this paper. It is necessary to employ planar structures for SONAR array to obtain narrower beam pattern which gives high resolution. In this study, the transmit frequency of each acoustic transducer, which consists of an array is 13 kHz. For efficient detection of a target of an asymmetric size, the concept of areal angle is applied, which considers resolution according to both azimuth and elevation angles in array design. In the design, the areal angle is first investigated to satisfy the resolution requirements, and then based on the value of areal angles, the azimuth angle and the elevation angle are calculated respectively to design an array.

능동 소나시스템에서 수신 신호의 해상도를 높이기 위한 방법은 다양하게 연구되어 왔다. 본 논문에서는 착저 물체의 탐지 해상도를 높이기 위한 방법으로 소나의 평면 배열 (planar array) 설계를 수행하였다. 해상력이 높은 좁은 형태의 빔 패턴을 얻기 위해서는 평면 형태의 어레이를 고려하는 것이 필요하다. 어레이를 구성하는 개별 음향 트랜스듀서의 송신 주파수는 13 kHz를 사용하였다. 비대칭 크기를 갖는 목표물의 효율적인 탐지를 위해 어레이 디자인에서 방위각(azimuth angle)과 고도각(elevation angle)에 따른 해상도를 동시에 고려하기 위해 areal angle 개념을 사용하였다. 그에 따라 목표 해상도를 만족하는 areal angle을 먼저 구하고 이를 역산하여 각각 목표 방위각과 고도각을 계산하여 어레이의 설계를 진행하였다.

Keywords

References

  1. E. M. Sozer, M. Stojanovic and J. G. Proakis, "Underwater acoustic networks," IEEE Journal of Oceanic Engineering, vol. 25, no. 1, pp. 72-83, Jan. 2000. https://doi.org/10.1109/48.820738
  2. D. A. Abraham and P. K. Willett, "Active sonar detection in shallow water using the Page test," IEEE Journal of Oceanic Engineering, vol. 27, no. 1, pp. 35-46, Jan., 2002. https://doi.org/10.1109/48.989883
  3. B. Erkmen, T. Yildrim, "Improving classification performance of sonar targets by applying general regression neural network with PCA," Expert Systems with Applications, vol. 35, no. 1-2, pp.472-475, July, 2008. https://doi.org/10.1016/j.eswa.2007.07.021
  4. D. Li, M. R Azimi-Sadjadi., M. Robinson, "Comparison of different classification algorithms for underwater target discrimination," IEEE Transactions on Neural Networks, vol. 15, no. 1, pp. 189-194, Jan. 2004. https://doi.org/10.1109/TNN.2003.820621
  5. M. Swift, J. L. Riley, S. Lourey and L. Booth, "An overview of the multistatic sonar program in Australia", Proc. ISSPA'99, pp. 321-324.
  6. L. Yang and Z. M. Cai, "Analysis of detectable region for the bistatic sonar in reverberation background", J. of Harbin Engineering University, vol. 27, pp. 597-602, Aug. 2006.
  7. S. G. Kargl, A. L. Espana, K. L. Williams, J. L. Kennedy and J. L. Lopes, "Scattering From Objects at a Water-Sediment Interface: Experiment, High-Speed and High-Fidelity Models, and Physical Insight," IEEE Journal of Oceanic Engineering, vol. 40, no. 3, pp. 632-642, July 2015. https://doi.org/10.1109/JOE.2014.2356934
  8. S. G. Kargl, K. L. Williams, T. M. Marston, J. L. Kennedy and J. L. Lopes, "Acoustic response of unexploded ordnance (UXO) and cylindrical targets," OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, 2010, pp. 1-5.
  9. X. Qing, D. Nie, G. Qiao and J. Tang, "Dolphin bio-inspired transmitting waveform design for cognitive sonar and its performance analysis", 2016 IEEE/OES China Ocean Acoustics (COA), china, 2016.
  10. S.H. Kim, J.W. Jung, B.S. On, S.B. Im and I.S. Seo "Optimum Frequency Analysis for Sonar Transmit Signal design", Journal of the Institute of Electronics and Information Engineers of Korea, Vol. 53, No. 5, pp. 47-54, May, 2016.
  11. B.S. On, S.H. Kim, W.S. Moon, S.B. Im and I.S. Seo "Detection of an Object Bottoming at Seabed by the Reflected Signal Modeling", Journal of the Institute of Electronics and Information Engineers of Korea, Vol. 53, No. 5, pp. 55-65, May, 2016.
  12. D.H. Johnson, D.E. Dudgeon, Array Signal Processing, Prentice Hall, New Jersey, 1993.
  13. T. Van, L. Harry, Optimum array processing : Detection, estimation, and modulation theory, Wiley, New Jersey, 2004.
  14. R. J. Urick, Principles of Underwater Sound, McGraw-Hill, 1983.