Spectroscopic Properties and Magnetic Behavior of \([\text{Cr(urea)}_6][\text{Cr}_2\text{O}_7]\text{Br} \cdot \text{H}_2\text{O}\)

Shinnosuke Tanaka†, Takashiro Akitsu†, Keon Sang Ryoo‡, and Jong-Ha Choi†,*

†Department of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
‡Department of Chemistry, Andong National University, Andong 36729, Korea. E-mail: jhchoi@anu.ac.kr

(Received January 5, 2017; Accepted January 31, 2017)

Key words: Chromium(III) complex, IR spectroscopy, Absorption spectroscopy, Magnetic Properties

INTRODUCTION

Chromium in compounds can exist in various oxidation states, ranging from II to VI. In particular, chromium(VI) in \(\text{CrO}_4^{2−}\) or \(\text{Cr}_2\text{O}_7^{2−}\) is highly cytotoxic substance and a potential carcinogen.\(^1\) A number of treatment methods for the removal of toxic heavy metal ions in water have been described.\(^2\) It may be possible that the \([\text{Cr(urea)}_6]^{3+}\) is suitable to target the oxoanion. In a recent communication, we described concerning synthesis and crystal structure of the \([\text{Cr(urea)}_6][\text{Cr}_2\text{O}_7]\text{Br} \cdot \text{H}_2\text{O}\) (Scheme 1).\(^3\)

The complex crystallized in the monoclinic space group \(P\overline{2}/n\) with \(Z = 4\). It consists of the isolated complex cation \([\text{Cr(urea)}_6]^{3+}\), together with \(\text{Cr}_2\text{O}_7^{2−}\) and \(\text{Br}^−\) counter ions. For convenience, a perspective drawing together with the atomic labeling is depicted in Fig. 1. It is found that the Cr(III) ion is coordinated by six urea ligands through oxygen atoms with the CrA-OA bond lengths ranging from 1.9534 (13) to 1.9776 (12) Å, and with OA–CrA–OA bond angles in the range of 85.10 (5)°–92.95 (5)°. The \(\text{Cr}_2\text{O}_7^{2−}\) anion is in a nearly staggered conformation. The Cr1B–O7B–Cr2B bridging angle in the anion is 130.26 (10)°. However, the detailed physical properties of the complex have not been published yet. In the present work we are reporting on the spectroscopic and magnetic studies of title complex by using UV-visible and IR spectroscopy and by measuring magnetic susceptibility.

Experimental

Materials and Synthesis

The chromium(III) bromide hexahydrate was obtained from Aldrich Chemical Co. and used as supplied. All chemicals were reagent-grade materials and used without further purification. \([\text{Cr(urea)}_6][\text{Cr}_2\text{O}_7]\text{Br} \cdot \text{H}_2\text{O}\) was prepared as described previously.\(^3\) Before the spectra were recorded, the complex was purified from aqueous solution by recrystallization. \(\text{Anal. Found: C, 10.32; H, 3.08; N, 23.38; Calc. for } [\text{Cr(\text{CO(NH}_2)_6}]^{3+}[\text{Cr}_2\text{O}_7]^{2−}\text{Br} \cdot \text{H}_2\text{O}: C, 9.92; H, 3.61; N, 23.14.\) UV-visible data, \(\lambda_{\text{max}}\) in nm: 274, 291, 367 (sh), 380, 441 (sh), 605. IR data (KBr, cm\(^{-1}\)): 3634 (sh) (νOH), 3450 (vs) (ν\text{NH}), 3352 (vs) (ν\text{NH}), 3352 (vs) (ν\text{NH}...H bonded), 1652 (s) (ν\text{Cr=O}), 1638 (s) (ν\text{CO} + δ\text{NH}_2), 1151 (s) (ρ\text{NH}_2), 1035 (s) (ν\text{C=N}), 940 (s) (νCr–O bonding), 800 (m–w) (ν\text{Cr–O}), 770 (w) (δ\text{C–O})
O), 924 (s) (v Cr–O), 881 (s) (v Cr–O), 797 (s), 776 (m) (ω CO), 689 (w), 633 (s), 598 (m), 531 (sh), 465 (m), and 452 (w) [v Cr-O(urea)].

Physical Measurements
Diffuse reflectance electronic spectra were measured on a JASCO V-570 UV/VIS/NIR spectrophotometer, equipped with an integrating sphere in the range of 200–1500 nm. The mid-infrared spectrum was obtained from a KBr pellet using a JASCO 460 plus series FT-IR spectrometer. The magnetic properties were investigated with a Quantum Design MPMS-XL superconducting quantum interference device SQUID magnetometer at an applied field of 1 T and a temperature range of 5-300 K. Powder samples were measured in a pharmaceutical cellulose capsule. Diamagnetic correction was applied with Pascal’s method. Analyses for C, H, and N were performed on a Perkin-Elmer 2400II CHNS/O analyzer at the Tokyo University of Science.

RESULTS AND DISCUSSION

Infrared Spectroscopy
The FT-IR spectrum of [Cr(urea)₆]Cl₂·H₂O is presented in Fig. 2.

The FT-IR spectrum showed a very strong absorption band at 3634 cm⁻¹ due to the O-H stretching mode of the hydrate water molecule. The symmetric and asymmetric modes of the noncoordinated NH group appeared at 3450 and 3352 cm⁻¹, respectively, along with an additional less intense band at 3218 cm⁻¹. The absorption band observed near 1035 cm⁻¹ is assigned to CO + CN vibrations. This indicates the formation of a CrA-OA(urea) bond instead of the CrA-OH bond reported in literature\(^\text{4}\) for [Cr(urea)₆]Cl₂·H₂O. The strong absorption bands at 1638 and 1151 cm⁻¹ can be assigned to NH₂ bending and rocking modes, respectively. However, for [Cr(urea)₆]Cl₂·H₂O the NH₂ rocking vibration value is 1175 cm⁻¹. The 24 cm⁻¹ lowering in the vibrational frequency indicates the weakening of the N-H bonds due to the presence of strong hydrogen bonding between the NH₂ groups and Cr₂O₅⁻\((\text{i.e., NA-H...OB})\). The strong absorption at 1035 cm⁻¹ and the medium absorption at 622 cm⁻¹ are assigned to νd(C=N) and δ(NCO), respectively. In compound (I), a sharp peak for the CrB-OB bond in Cr₂O₅⁻ was observed at 881 cm⁻¹. This is lower than that in the free dichromate ion.\(^\text{5}\) Sharp peaks were observed at 940, 881, and 776 cm⁻¹ that are assigned to the asymmetric, symmetric stretch for Cr₂O₅⁻, and the symmetric CrB-O1B-CrB2 stretching modes, respectively (Hilliard et al., 1982). The lowering in all these values is attributed to the weakening of the CrB-OB bond due to the formation of NA-H...OB hydrogen bonds.

Electronic Absorption Spectroscopy
The solid-state UV-visible spectrum of compound (I) is shown in Fig. 3.

Two bands corresponding to \(^4A_{2g} \rightarrow ^4T_{1g} \left(^2F\right)\) and \(^4A_{2g} \rightarrow ^4T_{1u} \left(^2P\right)\) transitions in the complex cation [Cr(urea)₆]⁺\(^\text{4}\) are believed to be obscured by the intense bands of the Cr₂O₅⁻ moiety. In order to have some point of reference for the splitting of the electron bands containing the dichromate anion, we have fitted the band profiles using six main Gaussian curves, as shown in Fig. 3. A deconvolution procedure on the experimental band pattern yielded maxima at 16530, 21505, 23475, 27100, 35090, and 38025 cm⁻¹ for [Cr(urea)₆][Cr₂O₅]Br·H₂O. Three electronic bands observed at 21505, 27100, and 38025 cm⁻¹ can be assigned as the lowest-energy singlet transitions of the dichromate ion: \(^1A_1 \rightarrow ^1E^\text{v}, ^1A_1 \rightarrow ^3A_1^+^1E^\text{v}, \) and \(^1A_1 \rightarrow ^1E^\text{v}\) because the UV-
visible spectrum of K₂Cr₃O₇ having a Cr(VI) metal center shows absorption bands at 22320, 28010, and 38910 cm⁻¹, respectively. The three lowest terms of the Cr(III) free ion 3d⁹ configuration, i.e., ⁴F, ⁴P and ²G (²F is the ground state) are reduced in an octahedral environment as follows:

\[\begin{align*}
4F & \rightarrow 4A₂g + 4T₂g + 4T₁g \\
4P & \rightarrow 4T₁g \\
²G & \rightarrow ²E₈ + ²T₁g + ²T₂g + ²A₁g
\end{align*} \]

In the case of chromium(III) complex with octahedral symmetry, several transitions due to spin-allowed and spin-forbidden are possible, as shown in Fig. 4.

In Fig. 3, two intense bands located at 16530 and 23475 cm⁻¹ correspond to the \(4A₂g \rightarrow ⁴T₂g\) (v₁) and \(4A₂g \rightarrow ⁴T₁g\) (v₂) transitions for the [Cr(urea)₃]⁺ moiety. The electronic bands for the [Cr(urea)₆]⁺ moiety are almost in agreement with those reported for [Cr(urea)₆]Cl₃.²⁹

For octahedral d⁹ system, the formula between three spin-allowed electronic transition energies and ligand field parameters is as follows.¹⁰

\[\begin{align*}
4A₂g & \rightarrow ⁴T₂g, \quad v₁ = 10Dq \quad (1) \\
4A₂g & \rightarrow ⁴T₁g (⁴F), \quad v₂ = 7.5B + 10Dq - 1/2(225B² + 100Dq² - 180DqB)²/² \quad (2) \\
4A₂g & \rightarrow ⁴T₁g (⁴P), \quad v₃ = 7.5B + 15Dq + 1/2(225B² + 100Dq² - 180DqB)²/² \quad (3)
\end{align*} \]

The first spin allowed transition directly gives the value of 10Dq. For [Cr(urea)₆]⁺ moiety, the crystal field splitting parameter, Dq and Racah interelectronic repulsion parameter, B were obtained as 1653 cm⁻¹ and 707 cm⁻¹, respectively. These parameters were calculated from the values of v₁ and v₂ by means of following eqs. (4) and (5).

\[\begin{align*}
Dq &= v₁/10 \quad (4) \\
B &= (2v₁² + v₂² - 3v₁v₂)/(15v₂ - 27v₁) \quad (5)
\end{align*} \]

The nephelauxetic parameter, β of 0.77 was calculated by the eq. (6).

\[\beta = B \text{ (complex)}/B \text{ (free ion)} \quad (6) \]

The second derivative of a spectral peak generally results in a peak of greater intensity than the original, but inverted. In the second derivative spectrum, the minima correspond to the maxima in the original spectrum, and hence, the minima are described as the positions of the peaks.¹² The spin-forbidden \(4A₂g \rightarrow ²E₈(R), ²T₁g(⁴T), ²T₂g(⁴J)\) bands were found at 14125, 14950, and 20750 cm⁻¹, respectively, from the second derivative of the solid-state absorption spectrum (Fig. 5), but could not be resolved into separate components.

The Racah parameter, C can be calculated from the position of the \(4A₂g ²E₈\) absorption band and the eq. (7).¹³

\[\begin{align*}
C &= (B/3.05)[E(²E₈)²/B - 7.90 + 1.80(B/Dq)] \quad (7)
\end{align*} \]

The value of C is evaluated to be 2979 cm⁻¹, which is significantly reduced from the free ion value of Cr(III), C (free ion) = 4133 cm⁻¹. A comparison of the two values

![Figure 4](image_url)
Figure 4. State energy level diagram and electronic transitions of chromium(III) complex with octahedral symmetry.

![Figure 5](image_url)
Figure 5. Absorption spectrum (a) and second derivative (b) of [Cr(urea)₆][Cr₂O₇]Br₂H₂O.
reveals that C is decreased by 28% from C (free ion).\footnote{11} This decrease is also due to effect of bond covalency. The values of D_q, B and C parameters obtained in here are comparable to those reported for $[\text{Cr}(\text{chxn})_3]^{3+}$ ($D_q = 2175$ cm$^{-1}$, $B = 703$ cm$^{-1}$ and $C = 2953$ cm$^{-1}$).\footnote{14} The spin-orbit coupling can be calculated from the Cole and Garret empirical relation.\footnote{15}

$$\lambda_{\text{eff}} = 11 \times 10^{-9} (B + 1080)^3 + 6.2 \quad (8)$$

Using B and Eq. (8) yields $\lambda_{\text{eff}} = 69$ cm$^{-1}$, which is in good agreement with the value expected for chromium(III) ion in crystals.\footnote{16} The deviation of λ_{eff} from λ_0 (87 cm$^{-1}$ for free ion) is due to the bonding effects of urea ligands toward chromium(III) ion in the crystal.\footnote{17}

The magnetic susceptibility of $[\text{Cr}($urea$)_6][\text{Cr}_2\text{O}_7]\text{Br} \cdot \text{H}_2\text{O}$ was measured in the temperature range of 5-300 K at 10 kOe. The plots of $\chi_M T$ vs. $T(a)$, and $\chi_M^{-1} vs. T(b)$ are shown in Fig. 6. The value of $\chi_M T$ at 300 K is 21.9 cm3 K mol$^{-1}$. On decreasing the temperature, the $\chi_M T$ value slightly increases to a maximum of 24.0 cm3 K mol$^{-1}$ at 15 K and decreases again down to 23.8 cm3 K mol$^{-1}$ at 5 K. The effective magnetic moment values, μ_{eff}, were calculated from the equation:

$$\mu_{\text{eff}} = 2.83(\chi_M T)^{1/2} \quad (9)$$

where χ_M is the molar magnetic susceptibility (emu mol$^{-1}$) and T is the absolute temperature.

The observed effective magnetic moments are in the range $3.73 \mu_B - 3.89 \mu_B$, as shown in Fig. 7. The chromium(III) ion ($3d^7$) has three unpaired electrons in the $3d$ shell, therefore its compounds were considered to have magnetic moments close to the spin-only value, $3.88 \mu_B$ and consistent with S

CONCLUSIONS

The FT-infrared and diffuse reflectance electronic spectra including magnetic properties of $[\text{Cr}($urea$)_6][\text{Cr}_2\text{O}_7]\text{Br} \cdot \text{H}_2\text{O}$ have been measured. The physical properties are in good agreement with the results obtained from X-ray crystallography that show that the Cr(III) ion is coordinated by six oxygen atoms deriving from urea ligands. Crystal field parameter D_q, nephelauxetic parameter B, Racah B and C parameters have been evaluated. The $[\text{Cr}($urea$)_6]^{3+}$ moiety may be used as a potential anion receptor for $\text{Cr}_2\text{O}_7^{2-}$ due to its high positive charge and the large number of hydrogen bond donor groups of its six urea ligands.

Acknowledgments. This work was supported by a grant from 2017 Research Funds of Andong National University.

REFERENCES

Spectroscopic Properties and Magnetic Behavior of \([\text{Cr(urea)}_6][\text{Cr}_2\text{O}_7]\text{Br·H}_2\text{O}\)

Part A. 1982, 68, 611.

