DOI QR코드

DOI QR Code

Anti-Obesity Effects of Fermented Soybean Oils in 3T3-L1 Pre-Adipocytes and High Fat Diet-Fed C57BL/6J Mice

발효콩 유지의 3T3-L1 지방전구세포와 고지방식이를 급여한 C57BL/6J 생쥐에 대한 항비만 효과

  • Received : 2016.12.08
  • Accepted : 2017.01.23
  • Published : 2017.03.31

Abstract

This study investigated the manufacturing of fermented soybean oil using a fermenting strain commonly processed for soybeans [Bacillus amyloliquefaciens (BA), Bacillus subtilis (BS), Lactobacillus acidophilus (LBA), and B. subtilis+L. acidophilus (BLO)] and evaluated its anti-obesity activities. Cytotoxicity of four kinds of fermented soybean oils was not observed in 3T3-L1 preadipocytes at 10 and $50{\mu}g/mL$. Triglyceride content was reduced by 20.6% in the BLO group at a treatment concentration of $50{\mu}g/mL$. The simultaneous treatment of fermented soybean oil and differentiation induction medium decreased $PPAR{\gamma}$ and $C/EBP{\alpha}$ gene expression at a concentration of $50{\mu}g/mL$ and blocked adipocyte differentiation by increasing adiponectin gene expression. The inhibitory effect of adipocyte differentiation was greatest in the BLO group. C57BL/6J mice were examined for 4 weeks after being separated into seven groups [normal diet group (N), high fat diet group (C), group fed high fat diet combined with regular soybean oil (SO), group fed non-fermented soybean oil (NF), and groups fed high fat diet combined with 5% fermented soybean oil (BA, BS, LBA, and BLO)] to identify the effects of soybean oil on body weight, serum lipid, adiponectin, insulin, and leptin levels in mice with high fat diet-induced obesity. The body weight and serum lipid level of the C group increased drastically compared to those of the N group. In contrast, the group fed a diet combined with fermented soybean oil showed decreases in weight, serum total cholesterol, LDL-cholesterol, and triglyceride levels compared to those of the C group. Moreover, soybean oil was found to be effective in the BLO group. In conclusion, fermented soybean oil has positive effects in prohibiting adipocyte differentiation increased by high fat diet and improving serum lipid composition. Therefore, fermented soybean oil can be used as a functional food material with anti-obesity activity.

본 연구에서는 발효콩 유지가 비만 억제 및 예방, 3T3-L1 지방전구세포의 성장 및 분화 억제 효과를 관찰하기 위해 실험을 실시하였다. 3T3-L1 지방전구세포에 발효콩 유지를 처리하여 세포생존율을 측정한 결과, NF군 $100{\mu}g/mL$에서 3T3-L1 지방전구세포의 생존율을 유의적으로 감소시켜 세포독성이 나타났다. 분화를 유도한 다음 세포 내 triglyceride 함량을 측정한 결과, 비발효콩 유지(NF) 처리군보다 발효콩 유지처리군에서 triglyceride 함량 저해 효과가 높게 나타났으며, 특히 BS, LBA, BLO군 순으로 높게 나타났다. 또한, BS군, LBA군, BLO군 순으로 지방세포분화 관련 유전자인 $PPAR{\gamma}$의 mRNA 발현을 농도 의존적으로 감소시켰으며, $PPAR{\gamma}$ 유전자와 상관관계에 있는 $C/EBP{\alpha}$ 유전자도 농도 의존적으로 감소시켰다. 그리고 adiponectin 유전자의 발현은 농도 의존적으로 증가시켰다. 고지방식이로 비만을 유도한 C57BL/6J 생쥐를 이용하여 항비만 활성을 관찰한 결과, 총 체중증가량은 대조군에 비해 4주째에 감소하는 경향이 나타났다. 혈액 내 지질농도를 측정한 결과 중성지방, 총콜레스테롤, LDL-콜레스테롤 함량은 LBA, BLO군에서 유의적으로 낮게 나타났으며(P<0.05), HDL-콜레스테롤 함량은 대조군보다 증가하였으나 유의적인 차이는 나타나지 않았다. 동맥경화 지수인 AI(atherogenic index)는 대조군보다 감소시키는 경향을 보였다. 비만관련 호르몬인 adiponectin의 농도는 SO, BS, LBA, BLO군에서 유의적으로 증가하였고(P<0.05), insulin 농도는 유의적으로 감소하였다(P<0.05). Leptin은 대조군보다 감소하였으나 유의적인 차이는 나타나지 않았다. 따라서 이러한 결과를 종합하여 볼 때 발효콩 유지가 3T3-L1 지방전구세포의 mRNA 단계에서부터 지방분화를 억제하여 항비만 활성을 가지고 있는 것으로 추정되고, 고지방식이로 비만이 유도된 C57BL/6J 생쥐에서 총체중을 감소시키고, 혈액 내 지질농도인 triglyceride와 총콜레스테롤, LDL-콜레스테롤 및 HDL-콜레스테롤과 비만관련 호르몬인 adiponectin, insulin, leptin을 조절하여 항비만 활성을 가지고 있는 것으로 확인되었다. 이 결과로 발효콩 유지가 항비만 생리활성을 나타내는 새로운 식품 소재로서 이를 활용한 기능성 식품 개발의 가능성이 있다고 생각된다.

Keywords

References

  1. Visscher TL, Seidell JC. 2001. The public health impact of obesity. Annu Rev Public Health 22: 355-375. https://doi.org/10.1146/annurev.publhealth.22.1.355
  2. Alessi MC, Lijnen HR, Bastelica D, Juhan-Vague I. 2003. Adipose tissue and atherothrombosis. Pathophysiol Haemost Thromb 33: 290-297. https://doi.org/10.1159/000083816
  3. Gesta S, Tseng YH, Kahn CR. 2007. Developmental origin of fat: tracking obesity to its source. Cell 131: 242-256. https://doi.org/10.1016/j.cell.2007.10.004
  4. Rosen ED, MacDougald OA. 2006. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol 7: 885-896. https://doi.org/10.1038/nrm2066
  5. Roncari DAK, Lau DCW, Kindler S. 1981. Exaggerated replication in culture of adipocyte precursors from massively obese persons. Metabolism 30: 425-427. https://doi.org/10.1016/0026-0495(81)90174-8
  6. Hsu CL, Yen GC. 2008. Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52: 53-61. https://doi.org/10.1002/mnfr.200700393
  7. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K. 2003. Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 278: 11561-11569. https://doi.org/10.1074/jbc.M211785200
  8. Gregoire FM, Smas CM, Sul HS. 1998. Understanding adipocyte differentiation. Physiol Rev 78: 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  9. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. 2000. Transcriptional regulation of adipogenesis. Genes Dev 14: 1293-1307.
  10. Weiss L, Hoffmann GE, Schreiber R, Andres H, Fuchs E, Korber E, Kolb HJ. 1986. Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty-acid synthase. Biol Chem Hoppe-Seyler 367: 905-912. https://doi.org/10.1515/bchm3.1986.367.2.905
  11. Lau DCW, Dhillon B, Yan H, Szmitko PE, Verma S. 2005. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol 288: H2031-H2041. https://doi.org/10.1152/ajpheart.01058.2004
  12. Kim SH, Yang JL, Song YS. 1999. Physiological functions of Chungkukjang. Food Industry and Nutrition 4(2): 40-46.
  13. Holt S. 1999. The food of the next millennium. In The Soy Revolution. M. Evans and Company, Inc., New York, NY, USA. p 4-6.
  14. Kim CH, Park JS, Sohn HS, Chung CW. 2002. Determination of isoflavone, total saponin, dietary fiber, soy oligosaccharides and lecithins from commercial soy products based on the one serving size: Some bioactive compounds from commercialized soy products. Korean J Food Sci Technol 34: 96-102.
  15. Park KY, Moon SH, Baik HS, Cheigh HS. 1990. Antimutagenic effect of doenjang (Korean fermented soy paste) toward aflatoxin. J Korean Soc Food Nutr 19: 156-162.
  16. Chung KS, Yoon KD, Kwon DJ, Hong SS, Choi SY. 1997. Cytotoxity testing of fermented soybean products with various tumour cell using MTT assay. Kor J Appl Microbiol Biotechnol 25: 477-482.
  17. Shon MY, Seo KI, Park SK, Cho YS, Sung NJ. 2001. Some biological activities and isoflavone content of chungkugjang prepared with black beans and Bacillus strains. J Korean Soc Food Sci Nutr 30: 662-667.
  18. Harmon AW, Harp JB. 2001. Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 280: C807-C813. https://doi.org/10.1152/ajpcell.2001.280.4.C807
  19. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  20. Birch DE. 1996. Simplified hot start PCR. Nature 381: 445-446. https://doi.org/10.1038/381445a0
  21. Friedewald WT, Levy RI, Fredrickson DS. 1972. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  22. Lauer RM, Lee J, Clarke WR. 1988. Factors affecting the relationship between childhood and adult cholesterol levels: the Muscatine Study. Pediatrics 82: 309-318.
  23. Engvall E, Perlmann P. 1972. Enzyme-linked immunosorbent assay, Elisa III. Quantitation of specific antibodies of enzyme-labeled anti-immunoglobulin in antigen-coated tubes. J Immunol 109: 129-135.
  24. Lew EA. 1985. Mortality and weight: insured lives and the American Cancer Society studies. Ann Intern Med 103: 1024-1029. https://doi.org/10.7326/0003-4819-103-6-1024
  25. Kim JS. 1996. Current research trends on bioactive function of soybean. Korea Soybean Digest 13(2): 17-24.
  26. Lee JO, Ha SD, Kim AJ, Yuh CS, Bang IS, Park SH. 2005. Industrial application and physiological functions of Chungkukjang. Food Science and Industry 38(2): 69-78.
  27. Velasquez MT, Bhathena SJ. 2007. Role of dietary soy protein in obesity. Int J Med Sci 4: 72-82.
  28. Zhong F, Liu J, Ma J, Shoemaker CF. 2007. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice. Food Res Int 40: 661-667. https://doi.org/10.1016/j.foodres.2006.11.011
  29. Lee SI, Lee YK, Kim SD, Lee IA, Choi J, Suh JW. 2013. Dietary effects of fermented soybean curd residue (Biji) on body weight, serum lipid profiles, and antioxidation-related enzymes activity of mice fed a high fat diet. J Korean Soc Food Sci Nutr 42: 1043-1053. https://doi.org/10.3746/jkfn.2013.42.7.1043
  30. Kim JY, Jeong JE, Moon SH, Park KY. 2010. Antiobesity effect of the Bacillus subtilis KC-3 fermented soymilk in 3T3-L1 adipocytes. J Korean Soc Food Sci Nutr 39: 1126-1131. https://doi.org/10.3746/jkfn.2010.39.8.1126
  31. Frayn KN, Karpe F, Fielding BA, Macdonald IA, Coppack SW. 2003. Integrative physiology of human adipose tissue. Int J Obes Relat Metab Disord 27: 875-888. https://doi.org/10.1038/sj.ijo.0802326
  32. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116S-3121S. https://doi.org/10.1093/jn/130.12.3116S
  33. Chen HC, Farese RV Jr. 2000. DGAT and triglyceride synthesis: a new target for obesity treatment?. Trends Cardiovasc Med 10: 188-192. https://doi.org/10.1016/S1050-1738(00)00066-9
  34. Yano T, Kobori S, Sakai M, Anami Y, Matsumura T, Matsuda H, Kasho M, Shichiri M. 1997. ${\beta}$-Very low density lipoprotein induces triglyceride accumulation through receptor mediated endocytotic pathway in 3T3-L1 adipocytes. Atherosclerosis 135: 57-64. https://doi.org/10.1016/S0021-9150(97)00146-9
  35. EI-Jack AK, Hamm JK, Pilch PF, Farmer SR. 1999. Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both $PPAR{\gamma}$ and $C/EBP{\alpha}$. J Biol Chem 274: 7946-7951. https://doi.org/10.1074/jbc.274.12.7946
  36. Hamm JK, Park BH, Farmer SR. 2001. A role for $C/EBP{\beta}$ in regulating peroxisome proliferator-activated receptor $\gamma$ activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 276: 18464-18471. https://doi.org/10.1074/jbc.M100797200
  37. Darlington GJ, Ross SE, MacDougald OA. 1998. The role of C/EBP genes in adipocyte differentiation. J Biol Chem 273: 30057-30060. https://doi.org/10.1074/jbc.273.46.30057
  38. Glomset JA. 1970. Physiological role of lecithin cholesterol acyltransferase. Am J Clin Nutr 23: 1129-1136. https://doi.org/10.1093/ajcn/23.8.1129
  39. Bae GJ, Son JH, Lee JH, Jeong NO, Ha BJ. 2014. Effects of Cladosiphon okamuranus dietary fiber on cholesterol in high fat diet-fed rats. J Food Hyg Safety 29: 370-375. https://doi.org/10.13103/JFHS.2014.29.4.370
  40. Han SH, Kim HY. 2013. Effects of Jebikong (Dolichos lablab) extract on serum lipid metabolism in rats fed a high fat diet. Korean J Food Culture 28: 409-414. https://doi.org/10.7318/KJFC/2013.28.4.409
  41. Um MY, Choi WH, Ahn J, Ha TY. 2013. Effects of ethanolic extract of Ulmus davidiana root on lipid metabolism in high-fat diet fed mice. Korean J Food Nutr 26: 8-14. https://doi.org/10.9799/ksfan.2013.26.1.008
  42. Gotto AM Jr, Farmer JA. 2006. Drug insight: the role of statins in combination with ezetimibe to lower LDL cholesterol. Nat Clin Pract Cardiovasc Med 3: 664-672. https://doi.org/10.1038/ncpcardio0711
  43. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. 2004. Adiponectin and metabolic syndrom. Arterioscler Thromb Vasc Biol 24: 29-33. https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  44. Friedman JM, Halaas JL. 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763-770. https://doi.org/10.1038/27376
  45. Galic S, Oakhill JS, Steinberg GR. 2010. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316: 129-139. https://doi.org/10.1016/j.mce.2009.08.018
  46. Lee S, So S, Hwang E, Koo B, Han G, Ko S, Kim N. 2008. Effects of ginseng and herbal plant mixtures on anti-obesity in obese SD rat induced by high fat diet. J Korean Soc Food Sci Nutr 37: 437-444. https://doi.org/10.3746/jkfn.2008.37.4.437

Cited by

  1. Platycodon grandiflorum Extract Reduces High-Fat Diet-Induced Obesity Through Regulation of Adipogenesis and Lipogenesis Pathways in Mice vol.22, pp.10, 2017, https://doi.org/10.1089/jmf.2018.4370
  2. Rhodosporidium toruloides를 활용한 비트 열수추출물의 중성지방 억제효과 vol.32, pp.5, 2019, https://doi.org/10.7732/kjpr.2019.32.5.415
  3. 건조 방법에 따른 홍해삼(Stipchopus japonicus) 효소 가수분해물의 지방 축적 억제 효과 vol.53, pp.5, 2017, https://doi.org/10.5657/kfas.2020.0707
  4. Metabolite analysis and anti-obesity effects of celery seed in 3T3-L1 adipocytes vol.30, pp.2, 2017, https://doi.org/10.1007/s10068-020-00866-9