Korean J. Math. **25** (2017), No. 1, pp. 1–18 http://dx.doi.org/10.11568/kjm.2017.25.1.1

([r, s], [t, u])-INTERVAL-VALUED INTUITIONISTIC FUZZY GENERALIZED PRECONTINUOUS MAPPINGS

CHUN-KEE PARK

ABSTRACT. In this paper, we introduce the concepts of ([r, s], [t, u])interval-valued intuitionistic fuzzy generalized preclosed sets and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen sets in the interval-valued intuitionistic smooth topological space and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized precontinuous mappings and then investigate some of their properties.

1. Introduction

After Zadeh [16] introduced the concept of fuzzy sets, there have been various generalizations of the concept of fuzzy sets. Chang [5] introduced the concept of fuzzy topology on a set X by axiomatizing a collection T of fuzzy subsets of X and Coker [7] introduced the concept of intuitionistic fuzzy topology on a set by axiomatizing a collection T of intuitionistic fuzzy subsets of X. Chattopadhyay, Hazra and Samanta [6,9] introduced the concept of gradation of openness of fuzzy subsets. Zadeh [17] introduced the concept of interval-valued fuzzy sets and Atanassov [1]

Received November 16, 2016. Revised December 07, 2016. Accepted December 08, 2016.

²⁰¹⁰ Mathematics Subject Classification: 54A40, 54A05, 54C08.

Key words and phrases: interval-valued intuitionistic smooth topological space, ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed set, ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen set, ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized precontinuous mapping.

This study was supported by 2016 Research Grant from Kangwon National University (No. 520160114).

[©] The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

introduced the concept of intuitionistic fuzzy sets. Atanassov and Gargov [2] introduced the concept of interval-valued intuitionistic fuzzy sets which is a generalization of both interval-valued fuzzy sets and intuitionistic fuzzy sets. Mondal and Samanta [10,15] introduced the concept of intuitionistic gradation of openness and defined an intuitionistic smooth topological space. In [13], we introduced the concept of interval-valued intuitionistic gradation of openness and defined an interval-valued intuitionistic smooth topological space. Fukutake, Saraf, Caldas and Mishra [8] introduced the concepts of generalized preclosed fuzzy sets and fuzzy generalized precontinuous mappings in fuzzy topological spaces.

In this paper, we introduce the concepts of ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed sets and ([r, s], [t, u])-intervalvalued intuitionistic fuzzy generalized preopen sets in the interval-valued intuitionistic smooth topological space and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized precontinuous mappings and then investigate some of their properties.

2. Preliminaries

Throughout this paper, let X be a nonempty set, I = [0, 1], $I_0 = (0, 1]$ and $I_1 = [0, 1)$. The family of all fuzzy sets of X will be denoted by I^X . By 0_X and 1_X we denote the characteristic functions of ϕ and X, respectively. For any $A \in I^X$, A^c denotes the complement of A, i.e., $A^c = 1_X - A$.

DEFINITION 2.1.[3,6,14]. A gradation of openness (for short, GO) on X, which is also called a *smooth topology* on X, is a mapping $\tau : I^X \to I$ satisfying the following conditions:

(O1) $\tau(0_X) = \tau(1_X) = 1$,

(O2) $\tau(A \cap B) \ge \tau(A) \land \tau(B)$ for each $A, B \in I^X$,

(O3) $\tau(\bigcup_{i\in\Gamma} A_i) \ge \wedge_{i\in\Gamma} \tau(A_i)$, for each subfamily $\{A_i : i\in\Gamma\} \subseteq I^X$. The pair (X,τ) is called a *smooth topological space* (for short, STS).

DEFINITION 2.2.[10]. An intuitionistic gradation of openness (for short, IGO) on X, which is also called an intuitionistic smooth topology on X, is an ordered pair (τ, τ^*) of mappings from I^X to I satisfying the following conditions:

(IGO1) $\tau(A) + \tau^*(A) \le 1$ for each $A \in I^X$, (IGO2) $\tau(0_X) = \tau(1_X) = 1$ and $\tau^*(0_X) = \tau^*(1_X) = 0$, (IGO3) $\tau(A \cap B) \ge \tau(A) \land \tau(B)$ and $\tau^*(A \cap B) \le \tau^*(A) \lor \tau^*(B)$ for each $A, B \in I^X$,

(IGO4) $\tau(\bigcup_{i\in\Gamma} A_i) \ge \wedge_{i\in\Gamma} \tau(A_i)$ and $\tau^*(\bigcup_{i\in\Gamma} A_i) \le \bigvee_{i\in\Gamma} \tau^*(A_i)$ for each subfamily $\{A_i : i\in\Gamma\} \subseteq I^X$.

The triple (X, τ, τ^*) is called an *intuitionistic smooth topological space* (for short, ISTS). τ and τ^* may be interpreted as gradation of openness and gradation of nonopenness, respectively.

DEFINITION 2.3.[10]. Let (X, τ, τ^*) and (Y, η, η^*) be two ISTSs and let $f: X \to Y$ be a mapping. f is called a gradation preserving mapping (for short, a GP-mapping) if for each $A \in I^Y$, $\eta(A) \leq \tau(f^{-1}(A))$ and $\eta^*(A) \geq \tau^*(f^{-1}(A))$.

Let D(I) be the set of all closed subintervals of the unit interval I. The elements of D(I) are generally denoted by capital letters M, N, \cdots and $M = [M^L, M^U]$, where M^L and M^U are respectively the lower and the upper end points. Especially, we denote $\mathbf{r} = [r, r]$ for each $r \in I$. The complement of M, denoted by M^c , is defined by $M^c = 1 - M = [1 - M^U, 1 - M^L]$. Note that M = N iff $M^L = N^L$ and $M^U = N^U$ and that $M \leq N$ iff $M^L \leq N^L$ and $M^U \leq N^U$.

DEFINITION 2.4.[17]. A mapping $A = [A^L, A^U] : X \to D(I)$ is called an *interval-valued fuzzy set* (for short, IVFS) on X, where $A(x) = [A^L(x), A^U(x)]$ for each $x \in X$. $A^L(x)$ and $A^U(x)$ are called the *lower* and *upper end points* of A(x), respectively.

DEFINITION 2.5.[11]. Let A and B be IVFSs on X.

(i) A = B iff $A^{L}(x) = B^{L}(x)$ and $A^{U}(x) = B^{U}(x)$ for all $x \in X$.

(ii) $A \subseteq B$ iff $A^{L}(x) \leq B^{L}(x)$ and $A^{U}(x) \leq B^{U}(x)$ for all $x \in X$.

(iii) The complement A^c of A is defined by $A^c(x) = [1 - A^U(x), 1 - A^L(x)]$ for all $x \in X$.

(iv) For a family of IVFSs $\{A_i : i \in \Gamma\}$, the union $\bigcup_{i \in \Gamma} A_i$ and the intersection $\bigcap_{i \in \Gamma} A_i$ are respectively defined by

$$\bigcup_{i\in\Gamma} A_i(x) = [\bigvee_{i\in\Gamma} A_i^L(x), \bigvee_{i\in\Gamma} A_i^U(x)],$$
$$\bigcap_{i\in\Gamma} A_i(x) = [\wedge_{i\in\Gamma} A_i^L(x), \wedge_{i\in\Gamma} A_i^U(x)]$$

for all $x \in X$.

DEFINITION 2.6.[2]. A mapping $A = (\mu_A, \nu_A) : X \to D(I) \times D(I)$ is called an *interval-valued intuitionistic fuzzy set* (for short, IVIFS) on X, where $\mu_A : X \to D(I)$ and $\nu_A : X \to D(I)$ are interval-valued fuzzy sets

on X with the condition $\sup_{x \in X} \mu_A^U(x) + \sup_{x \in X} \nu_A^U(x) \leq 1$. The intervals $\mu_A(x) = [\mu_A^L(x), \mu_A^U(x)]$ and $\nu_A(x) = [\nu_A^L(x), \nu_A^U(x)]$ denote the degree of belongingness and the degree of nonbelongingness of the element x to the set A, respectively.

DEFINITION 2.7.[12]. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IVIFSs on X.

(i) $A \subseteq B$ iff $\mu_A^L(x) \leq \mu_B^L(x), \ \mu_A^U(x) \leq \mu_B^U(x)$ and $\nu_A^L(x) \geq \nu_B^L(x), \ \nu_A^U(x) \geq \nu_B^U(x)$ for all $x \in X$.

(ii) A = B iff $A \subseteq B$ and $B \subseteq A$.

(iii) The complement A^c of A is defined by $\mu_{A^c}(x) = \nu_A(x)$ and $\nu_{A^c}(x) = \mu_A(x)$ for all $x \in X$.

(iv) For a family of IVIFSs $\{A_i : i \in \Gamma\}$, the union $\bigcup_{i \in \Gamma} A_i$ and the intersection $\bigcap_{i \in \Gamma} A_i$ are respectively defined by

$$\mu_{\cup_{i\in\Gamma}A_{i}}(x) = \bigcup_{i\in\Gamma}\mu_{A_{i}}(x), \nu_{\cup_{i\in\Gamma}A_{i}}(x) = \cap_{i\in\Gamma}\nu_{A_{i}}(x),$$
$$\mu_{\cap_{i\in\Gamma}A_{i}}(x) = \cap_{i\in\Gamma}\mu_{A_{i}}(x), \nu_{\cap_{i\in\Gamma}A_{i}}(x) = \bigcup_{i\in\Gamma}\nu_{A_{i}}(x)$$
$$\mathbf{v}$$

for all $x \in X$.

DEFINITION 2.8.[4]. Let (X, \mathcal{T}) be a fuzzy topological space.

(i) A fuzzy set A in X is called a preopen fuzzy set if $A \subseteq int(cl(A))$ and a preclosed fuzzy set if $cl(int(A)) \subseteq A$.

(ii) The *preclosure* of a fuzzy set A in X is the intersection of all preclosed fuzzy sets containing A and is denoted by pcl(A).

(iii) A fuzzy set A in X is called a generalized preclosed fuzzy set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is an open fuzzy set in X. The complement of a generalized preclosed fuzzy set is called a generalized preopen fuzzy set.

DEFINITION 2.9.[4]. Let (X, \mathcal{T}) and (Y, \mathcal{U}) be two fuzzy topological spaces. A mapping $f : X \to Y$ is called *fuzzy generalized precontinuous* if $f^{-1}(A)$ is a generalized preclosed fuzzy set in X for every closed fuzzy set A of Y.

3. ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed and preopen sets

DEFINITION 3.1.[13]. An interval-valued intuitionistic gradation of openness (for short, IVIGO) on X, which is also called an intervalvalued intuitionistic smooth topology on X, is an ordered pair (τ, τ^*) of

mappings $\tau = [\tau^L, \tau^U] : I^X \to D(I)$ and $\tau^* = [\tau^{*L}, \tau^{*U}] : I^X \to D(I)$ satisfying the following conditions:

(IVIGO1) $\tau^L(A) \leq \tau^U(A), \tau^{*L}(A) \leq \tau^{*U}(A) \text{ and } \tau^U(A) + \tau^{*U}(A) \leq 1$ for each $A \in I^X$,

(IVIGO2) $\tau(0_X) = \tau(1_X) = \mathbf{1}$ and $\tau^*(0_X) = \tau^*(1_X) = \mathbf{0}$,

(IVIGO3) $\tau^{L}(A \cap B) \geq \tau^{L}(A) \wedge \tau^{L}(B), \tau^{U}(A \cap B) \geq \tau^{U}(A) \wedge \tau^{U}(B)$ and $\tau^{*L}(A \cap B) \leq \tau^{*L}(A) \vee \tau^{*L}(B), \tau^{*U}(A \cap B) \leq \tau^{*U}(A) \vee \tau^{*U}(B)$ for each $A, B \in I^{X}$,

(IVIGO4) $\tau^{L}(\bigcup_{i\in\Gamma} A_i) \geq \bigwedge_{i\in\Gamma} \tau^{L}(A_i), \tau^{U}(\bigcup_{i\in\Gamma} A_i) \geq \bigwedge_{i\in\Gamma} \tau^{U}(A_i)$ and $\tau^{*L}(\bigcup_{i\in\Gamma} A_i) \leq \bigvee_{i\in\Gamma} \tau^{*L}(A_i), \tau^{*U}(\bigcup_{i\in\Gamma} A_i) \leq \bigvee_{i\in\Gamma} \tau^{*U}(A_i)$ for each subfamily $\{A_i : i\in\Gamma\} \subseteq I^X$.

The triple (X, τ, τ^*) is called an *interval-valued intuitionistic smooth* topological space (for short, IVISTS). τ and τ^* may be interpreted as interval-valued gradation of openness and interval-valued gradation of nonopenness, respectively.

DEFINITION 3.2.[13]. An interval-valued intuitionistic gradation of closedness (for short, IVIGC) on X, which is also called an intervalvalued intuitionistic smooth cotopology on X, is an ordered pair $(\mathcal{F}, \mathcal{F}^*)$ of mappings $\mathcal{F} = [\mathcal{F}^L, \mathcal{F}^U] : I^X \to D(I)$ and $\mathcal{F}^* = [\mathcal{F}^{*L}, \mathcal{F}^{*U}] : I^X \to D(I)$ satisfying the following conditions:

(IVIGC1) $\mathcal{F}^{L}(A) \leq \mathcal{F}^{U}(A), \mathcal{F}^{*L}(A) \leq \mathcal{F}^{*U}(A) \text{ and } \mathcal{F}^{U}(A) + \mathcal{F}^{*U}(A) \leq 1 \text{ for each } A \in I^{X},$

(IVIGC2) $\mathcal{F}(0_X) = \mathcal{F}(1_X) = \mathbf{1}$ and $\mathcal{F}^*(0_X) = \mathcal{F}^*(1_X) = \mathbf{0}$,

(IVIGC3) $\mathcal{F}^{L}(A \cup B) \geq \mathcal{F}^{L}(A) \wedge \mathcal{F}^{L}(B), \mathcal{F}^{U}(A \cup B) \geq \mathcal{F}^{U}(A) \wedge \mathcal{F}^{U}(B)$ and $\mathcal{F}^{*L}(A \cup B) \leq \mathcal{F}^{*L}(A) \vee \mathcal{F}^{*L}(B), \mathcal{F}^{*U}(A \cup B) \leq \mathcal{F}^{*U}(A) \vee \mathcal{F}^{*U}(B)$ for each $A, B \in I^{X}$,

(IVIGC4) $\mathcal{F}^{L}(\cap_{i\in\Gamma} A_{i}) \geq \wedge_{i\in\Gamma} \mathcal{F}^{L}(A_{i}), \mathcal{F}^{U}(\cap_{i\in\Gamma} A_{i}) \geq \wedge_{i\in\Gamma} \mathcal{F}^{U}(A_{i})$ and $\mathcal{F}^{*L}(\cap_{i\in\Gamma} A_{i}) \leq \vee_{i\in\Gamma} \mathcal{F}^{*L}(A_{i}), \mathcal{F}^{*U}(\cap_{i\in\Gamma} A_{i}) \leq \vee_{i\in\Gamma} \mathcal{F}^{*U}(A_{i})$ for each subfamily $\{A_{i}: i\in\Gamma\} \subseteq I^{X}$.

For an IVIGO (τ, τ^*) and an IVIGC $(\mathcal{F}, \mathcal{F}^*)$ on X, we define

$$\tau_{\mathcal{F}}(A) = \mathcal{F}(A^c), \ \tau_{\mathcal{F}^*}^*(A) = \mathcal{F}^*(A^c),$$
$$\mathcal{F}_{\tau}(A) = \tau(A^c), \ \mathcal{F}_{\tau^*}^*(A) = \tau^*(A^c)$$

for each $A \in I^X$.

DEFINITION 3.3. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$.

(i) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy open set (for short, ([r, s], [t, u])-IVIFOS) if $\tau(A) \ge [r, s]$ and $\tau^*(A) \le [t, u]$.

(ii) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy closed set (for short, ([r, s], [t, u])-IVIFCS) if $\mathcal{F}_{\tau}(A) \geq [r, s]$ and $\mathcal{F}_{\tau^*}^*(A) \leq [t, u]$.

DEFINITION 3.4. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$. The ([r, s], [t, u])-interval-valued intuitionistic fuzzy closure and ([r, s], [t, u])-interval-valued intuitionistic fuzzy interior of A are defined by

 $cl_{[r,s],[t,u]}(A) = \cap \{ K \in I^X : A \subseteq K, \ \mathcal{F}_{\tau}(K) \ge [r,s], \ \mathcal{F}_{\tau^*}(K) \le [t,u] \}, \\ int_{[r,s],[t,u]}(A) = \cup \{ G \in I^X : G \subseteq A, \ \tau(G) \ge [r,s], \ \tau^*(G) \le [t,u] \}.$

DEFINITION 3.5. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$.

(i) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy preopen set (for short, ([r, s], [t, u])-IVIFPOS) if $A \subseteq int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(A))$.

(ii) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy preclosed set (for short, ([r, s], [t, u])-IVIFPCS) if A^c is an ([r, s], [t, u])-IVIFPOS, or equivalently, $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(A)) \subseteq A$.

Note that if A is an ([r, s], [t, u])-IVIFOS then A is an ([r, s], [t, u])-IVIFPOS and that if A is an ([r, s], [t, u])-IVIFCS then A is an ([r, s], [t, u])-IVIFPCS.

REMARK 3.6. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$. Then

(i) Any intersection of ([r, s], [t, u])-IVIFPCSs is an ([r, s], [t, u])-IVIFPCS. (ii) Any union of ([r, s], [t, u])-IVIFPOSs is an ([r, s], [t, u])-IVIFPOS.

DEFINITION 3.7. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$. The ([r, s], [t, u])-interval-valued intuitionistic fuzzy preclosure and ([r, s], [t, u])-interval-valued intuitionistic fuzzy preinterior of A are defined by

 $pcl_{[r,s],[t,u]}(A) = \cap \{K \in I^X : A \subseteq K, K \text{ is an } ([r,s],[t,u])\text{-IVIFPCS}\}, pint_{[r,s],[t,u]}(A) = \cup \{G \in I^X : G \subseteq A, G \text{ is an } ([r,s],[t,u])\text{-IVIFPOS}\}.$

Note that $int_{[r,s],[t,u]}(A) \subseteq pint_{[r,s],[t,u]}(A) \subseteq A \subseteq pcl_{[r,s],[t,u]}(A) \subseteq cl_{[r,s],[t,u]}(A)$.

DEFINITION 3.8. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$.

(i) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed set (for short, ([r, s], [t, u])-IVIFGPCS) if $pcl_{([r,s], [t, u])}(A)$ $\subseteq U$ whenever $A \subseteq U$ and U is an ([r, s], [t, u])-IVIFOS.

(ii) A is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen set (for short, ([r, s], [t, u])-IVIFGPOS) if A^c is an ([r, s], [t, u])-IVIFGPOS) if [t, u])-IVIFGPCS, or equivalently, $U \subseteq pint_{[r,s],[t,u]}(A)$ whenever $U \subseteq A$ and U is an ([r, s], [t, u])-IVIFCS.

Note that if A is an ([r, s], [t, u])-IVIFPCS then A is an ([r, s], [t, u])-IVIFGPCS and that if A is an ([r, s], [t, u])-IVIFPOS then A is an ([r, s], [t, u])-IVIFGPOS.

EXAMPLE 3.9. The intersection of two ([r, s], [t, u])-IVIFGPCSs need not be an ([r, s], [t, u])-IVIFGPCS and the union of two ([r, s], [t, u])-IVIFGPOSs need not be an ([r, s], [t, u])-IVIFGPOS.

Let $X = \{a, b, c\}$. Define $G_1, G_2, G_3 \in I^X$ as follows:

$$G_1 = \{(a, 1), (b, 0), (c, 0)\}, G_2 = \{(a, 1), (b, 1), (c, 0)\}$$

$$G_3 = \{(a, 1), (b, 0), (c, 1)\}.$$

Define $\tau, \tau^* : I^X \to D(I)$ as follows:

$$\tau(A) = \begin{cases} \mathbf{1} & \text{if } A \in \{0_X, 1_X\}, \\ [0.7, 0.8] & \text{if } A = G_1, \\ [0.5, 0.6] & \text{if } A = G_2, \\ [0.3, 0.4] & \text{if } A = G_3, \\ \mathbf{0} & \text{otherwise.} \end{cases}$$
$$\tau^*(A) = \begin{cases} \mathbf{0} & \text{if } A \in \{0_X, 1_X\}, \\ [0.1, 0.2] & \text{if } A = G_1, \\ [0.3, 0.4] & \text{if } A = G_2, \\ [0.5, 0.6] & \text{if } A = G_3, \\ \mathbf{1} & \text{otherwise.} \end{cases}$$

Then (X, τ, τ^*) is an IVISTS. Let [r, s] = [0.6, 0.7] and [t, u] = [0.2, 0.3]. Then $int_{[r,s],[t,u]}(G_2) = G_1$ and $cl_{[r,s],[t,u]}(G_1) = 1_X$. Hence $cl_{[r,s],[t,u]}(G_1) = G_1$. $(int_{[r,s],[t,u]}(G_2)) = 1_X \nsubseteq G_2$. Thus G_2 is not an ([r,s],[t,u])-IVIFPCS. Similarly, G_3 is not also an ([r, s], [t, u])-IVIFPCS. Let $G_2 \subseteq U$ and let U be an ([r,s], [t,u])-IVIFOS. Then $U = 1_X$ and so $pcl_{[r,s], [t,u]}(G_2) \subseteq$ $1_X = U$. Hence G_2 is an ([r, s], [t, u])-IVIFGPCS. Similarly, G_3 is also

an ([r, s], [t, u])-IVIFGPCS. Since $G_2 \cap G_3 = G_1$ and $int_{[r,s],[t,u]}(G_1) = G_1$ and $cl_{[r,s],[t,u]}(G_1) = 1_X$, $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(G_1)) = 1_X \notin G_1$. Hence G_1 is not an ([r, s], [t, u])-IVIFPCS. Also G_1 is an ([r, s], [t, u])-IVIFOS. Let $G = \{(a, 1), (b, s), (c, t)\} \in I^X$, where $s, t \in (0, 1)$. Then $int_{[r,s],[t,u]}(G) =$ G_1 and so $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(G)) = 1_X \notin G$. Hence G is not an ([r, s], [t, u])-IVIFPCS. Therefore the set for which K is an ([r, s], [t, u])-IVIFPCS with $G_1 \subseteq K$ is only $K = 1_X$. Hence $pcl_{[r,s],[t,u]}(G_1) = \cap\{K \in$ $I^X : G_1 \subseteq K, K$ is an ([r, s], [t, u])-IVIFPCS $\} = 1_X \notin G_1$. Therefore $G_2 \cap G_3 = G_1$ is not an ([r, s], [t, u])-IVIFGPCS.

By taking the complement in the above example, the union of two ([r, s], [t, u])-IVIFGPOSs need not be an ([r, s], [t, u])-IVIFGPOS.

DEFINITION 3.10. Let (X, τ, τ^*) be an IVISTS, $A \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s+u \leq 1$. The ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosure and ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preinterior of A are defined by

 $gpcl_{[r,s],[t,u]}(A) = \cap \{K \in I^X : A \subseteq K, K \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\}, gpint_{[r,s],[t,u]}(A) = \cup \{G \in I^X : G \subseteq A, G \text{ is an } ([r,s],[t,u])\text{-IVIFGPOS}\}.$

Note that $int_{[r,s],[t,u]}(A) \subseteq pint_{[r,s],[t,u]}(A) \subseteq gpint_{[r,s],[t,u]}(A) \subseteq A \subseteq gpcl_{[r,s],[t,u]}(A) \subseteq pcl_{[r,s],[t,u]}(A) \subseteq cl_{[r,s],[t,u]}(A).$

THEOREM 3.11. Let (X, τ, τ^*) be an IVISTS, $A, B \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$. Then

(i) $gpcl_{[r,s],[t,u]}(0_X) = 0_X.$

(ii) $A \subseteq gpcl_{[r,s],[t,u]}(A)$.

(iii) $A = gpcl_{[r,s],[t,u]}(A)$ if A is an ([r,s],[t,u])-IVIFGPCS.

(iv) $gpcl_{[r,s],[t,u]}(A) \subseteq gpcl_{[r,s],[t,u]}(B)$ if $A \subseteq B$.

- (v) $gpcl_{[r,s],[t,u]}(A \cup B) \supseteq gpcl_{[r,s],[t,u]}(A) \cup gpcl_{[r,s],[t,u]}(B),$
- $gpcl_{[r,s],[t,u]}(A \cap B) \subseteq gpcl_{[r,s],[t,u]}(A) \cap gpcl_{[r,s],[t,u]}(B).$
- (vi) $gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)) = gpcl_{[r,s],[t,u]}(A).$
- (vii) $gpcl_{[r,s],[t,u]}(A^c) = (gpint_{[r,s],[t,u]}(A))^c$.

Proof. (i), (ii), (iii) and (iv) follow directly from Definition 3.10. (v) It follows directly from (iv).

(vi) By (ii) and (iv), $gpcl_{[r,s],[t,u]}(A) \subseteq gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A))$. Suppose that $gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)) \notin gpcl_{[r,s],[t,u]}(A)$. Then there exists $x \in X$ such that $(gpcl_{[r,s],[t,u]}(A))(x) < (gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)))(x)$. Choose $a \in (0, 1)$ with $(gpcl_{[r,s],[t,u]}(A))(x) < a < (gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)))(x)$. Since $(gpcl_{[r,s],[t,u]}(A))(x) < a$, by Definition 3.10, there exists an ([r,s], [t,u])-IVIFGPCS K such that $A \subseteq K$ and K(x) < a. Since K is an ([r,s], [t,u])-IVIFGPCS with $A \subseteq K$, $gpcl_{[r,s],[t,u]}(A) \subseteq K$ and also $gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)) \subseteq K$. Hence $(gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)))(x) \leq K(x) < a$. This is a contradiction. Hence $gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)) \subseteq gpcl_{[r,s],[t,u]}(A)$. Therefore $gpcl_{[r,s],[t,u]}(gpcl_{[r,s],[t,u]}(A)) = gpcl_{[r,s],[t,u]}(A)$.

(vii) By Definition 3.10, we have

$$gpcl_{[r,s],[t,u]}(A^{c})$$

$$= \cap \{K \in I^{X} : A^{c} \subseteq K, K \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS} \}$$

$$= \cap \{G^{c} \in I^{X} : A^{c} \subseteq G^{c}, G^{c} \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS} \}$$

$$= (\cup \{G \in I^{X} : G \subseteq A, G \text{ is an } ([r,s],[t,u])\text{-IVIFGPOS} \})^{c}$$

$$= (gpint_{[r,s],[t,u]}(A))^{c}.$$

THEOREM 3.12. Let (X, τ, τ^*) be an IVISTS, $A, B \in I^X$ and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$. Then

(i) $gpint_{[r,s],[t,u]}(1_X) = 1_X$. (ii) $gpint_{[r,s],[t,u]}(A) \subseteq A$. (iii) $A = gpint_{[r,s],[t,u]}(A)$ if A is an ([r,s], [t,u])-IVIFGPOS.

(iv) $gpint_{[r,s],[t,u]}(A) \subseteq gpint_{[r,s],[t,u]}(B)$ if $A \subseteq B$.

(v) $gpint_{[r,s],[t,u]}(A \cup B) \supseteq gpint_{[r,s],[t,u]}(A) \cup gpint_{[r,s],[t,u]}(B),$ $gpint_{[r,s],[t,u]}(A \cap B) \subseteq gpint_{[r,s],[t,u]}(A) \cap gpint_{[r,s],[t,u]}(B).$

(vi) $gpint_{[r,s],[t,u]}(gpint_{[r,s],[t,u]}(A)) = gpint_{[r,s],[t,u]}(A).$

(vii) $gpint_{[r,s],[t,u]}(A^c) = (gpcl_{[r,s],[t,u]}(A))^c$.

Proof. The proof is similar to Theorem 3.11.

4. ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized precontinuous mappings

DEFINITION 4.1. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping.

(i) f is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized precontinuous mapping (for short, ([r, s], [t, u])-IVIFG precontinuous mapping) if $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPCS of X for each ([r, s], [t, u])-IVIFCS A of Y.

(ii) f is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preopen mapping (for short, ([r, s], [t, u])-IVIFG preopen mapping) if f(A) is an ([r, s], [t, u])-IVIFGPOS of Y for each ([r, s], [t, u])-IVIFOS A of X.

(iii) f is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preclosed mapping (for short, ([r, s], [t, u])-IVIFG preclosed mapping) if f(A) is an ([r, s], [t, u])-IVIFGPCS of Y for each ([r, s], [t, u])IVIFCS A of X.

(iv) f is called an ([r, s], [t, u])-interval-valued intuitionistic fuzzy generalized preirresolute mapping (for short, ([r, s], [t, u])-IVIFG preirresolute mapping) if $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPCS of X for each ([r, s], [t, u])-IVIFGPCS A of Y.

Note that $f: X \to Y$ is an ([r, s], [t, u])-IVIFG precontinuous mapping if and only if $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPOS of X for each ([r, s], [t, u])-IVIFOS A of Y.

THEOREM 4.2. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s+u \leq 1$ and let $f: X \to Y$ be a mapping. If f is an ([r, s], [t, u])-IVIFG precontinuous mapping, then $f(gpcl_{[r,s],[t,u]}(A)) \subseteq cl_{[r,s],[t,u]}(f(A))$ for each $A \in I^X$.

Proof. Let $A \in I^X$. Then $cl_{[r,s],[t,u]}(f(A))$ is an ([r,s], [t,u])-IVIFCS of Y. Since f is ([r,s], [t,u])-IVIFG precontinuous, $f^{-1}(cl_{[r,s],[t,u]}(f(A)))$ is an ([r,s], [t,u])-IVIFGPCS of X. Since $A \subseteq f^{-1}(cl_{[r,s],[t,u]}(f(A)))$, by Definition 3.10 $gpcl_{[r,s],[t,u]}(A) \subseteq f^{-1}(cl_{[r,s],[t,u]}(f(A)))$. Hence $f(gpcl_{[r,s],[t,u]}(A)) \subseteq f(f^{-1}(cl_{[r,s],[t,u]}(f(A)))) \subseteq cl_{[r,s],[t,u]}(f(A))$.

THEOREM 4.3. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. If $f(pcl_{[r,s],[t,u]}(A)) \subseteq cl_{[r,s],[t,u]}(f(A))$ for each $A \in I^X$, then f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

Proof. Let A be an ([r, s], [t, u])-IVIFCS of Y. Then $f^{-1}(A) \in I^X$. Let $f^{-1}(A) \subseteq U$ and let U be an ([r, s], [t, u])-IVIFOS. By hypothesis, $f(pcl_{[r,s],[t,u]} (f^{-1}(A))) \subseteq cl_{[r,s],[t,u]} (f(f^{-1}(A))) \subseteq cl_{[r,s],[t,u]} (A) = A$. Hence $pcl_{[r,s],[t,u]} (f^{-1}(A)) \subseteq f^{-1}(f(pcl_{[r,s],[t,u]} (f^{-1}(A)))) \subseteq f^{-1}(A) \subseteq U$. Thus $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPCS of X. Therefore f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

DEFINITION 4.4. An IVISTS (X, τ, τ^*) is called an *interval-valued intuitionistic fuzzy pre* $T_{1/2}$ space (for short, IVIFPT_{1/2} space) if for each $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$, every ([r, s], [t, u])-IVIFGPCS in X is an ([r, s], [t, u])-IVIFPCS in X.

THEOREM 4.5. Let (X, τ, τ^*) be an $IVIFPT_{1/2}$ space and (Y, η, η^*) an IVISTS and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f: X \to Y$ be a mapping. Then the following statements are equivalent. (i) f is an ([r, s], [t, u])-IVIFG precontinuous mapping. (ii) $f(gpcl_{[r,s],[t,u]}(A)) \subseteq cl_{[r,s],[t,u]}(f(A))$ for each $A \in I^X$. (iii) $gpcl_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A))$ for each $A \in I^Y$. (iv) $f^{-1}(int_{[r,s],[t,u]}(A)) \subseteq gpint_{[r,s],[t,u]}(f^{-1}(A))$ for each $A \in I^Y$.

Proof. (i) \Rightarrow (ii). It follows from Theorem 4.2. (ii) \Rightarrow (iii). Let $A \in I^Y$. Then $f^{-1}(A) \in I^X$. By (ii), we have

$$f(gpcl_{[r,s],[t,u]}(f^{-1}(A))) \subseteq cl_{[r,s],[t,u]}(f(f^{-1}(A)))$$
$$\subseteq cl_{[r,s],[t,u]}(A).$$

Hence we have

$$gpcl_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(f(gpcl_{[r,s],[t,u]}(f^{-1}(A))))$$
$$\subseteq f^{-1}(cl_{[r,s],[t,u]}(A)).$$

(iii) \Rightarrow (iv). Let $A \in I^{Y}$. By (iii), we have

$$gpcl_{[r,s],[t,u]}((f^{-1}(A))^{c}) = gpcl_{[r,s],[t,u]}(f^{-1}(A^{c}))$$
$$\subseteq f^{-1}(cl_{[r,s],[t,u]}(A^{c})).$$

Thus $(gpint_{[r,s],[t,u]}(f^{-1}(A)))^c \subseteq (f^{-1}(int_{[r,s],[t,u]}(A)))^c$. Hence $f^{-1}(int_{[r,s],[t,u]}(A)) \subseteq gpint_{[r,s],[t,u]}(f^{-1}(A))$.

 $(iv) \Rightarrow (i)$. Let A be an ([r, s], [t, u])-IVIFCS of Y. Then $f^{-1}(A) \in I^X$ and A^c is an ([r, s], [t, u])-IVIFOS of Y and so $int_{[r,s],[t,u]}(A^c) = A^c$. Let $f^{-1}(A) \subseteq U$ and let U be an ([r, s], [t, u])-IVIFOS of X. By (iv), we have

$$(f^{-1}(A))^{c} = f^{-1}(A^{c}) = f^{-1}(int_{[r,s],[t,u]}(A^{c}))$$
$$\subseteq gpint_{[r,s],[t,u]}(f^{-1}(A^{c}))$$
$$= (gpcl_{[r,s],[t,u]}(f^{-1}(A)))^{c}.$$

Hence $gpcl_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(A)$ and so $gpcl_{[r,s],[t,u]}(f^{-1}(A)) = f^{-1}(A)$. Since (X, τ, τ^*) is an IVIFPT_{1/2} space, $gpcl_{[r,s],[t,u]}(f^{-1}(A)) = pcl_{[r,s],[t,u]}(f^{-1}(A))$. $(f^{-1}(A))$. Hence $pcl_{[r,s],[t,u]}(f^{-1}(A)) = f^{-1}(A) \subseteq U$. Thus $f^{-1}(A)$ is

an ([r, s], [t, u])-IVIFGPCS of X. Therefore f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

THEOREM 4.6. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. If $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A))$ for each $A \in I^Y$, then f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

Proof. Let A be an ([r, s], [t, u])-IVIFCS of Y. Then $cl_{[r,s],[t,u]}(A) = A$. By hypothesis, $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A)) = f^{-1}(A)$. Thus $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFPCS of X. So $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFPCS of X. So $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPCS of X. Hence f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

We can obtain the following corollary from Theorem 4.6.

COROLLARY 4.7. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. If $f^{-1}(int_{[r,s],[t,u]}(A)) \subseteq int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A)))$ for each $A \in I^Y$, then f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

THEOREM 4.8. Let (X, τ, τ^*) be an $IVIFPT_{1/2}$ space and (Y, η, η^*) an IVISTS and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f: X \to Y$ be a mapping. Then the following statements are equivalent. (i) f is an ([r, s], [t, u])-IVIFG precontinuous mapping.

(ii) $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A))$ for each $A \in I^Y$. (iii) $f^{-1}(int_{[r,s],[t,u]}(A)) \subseteq int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A)))$ for each $A \in I^Y$. I^Y .

Proof. (i)⇒(ii). Let $A \in I^Y$. Then $cl_{[r,s],[t,u]}(A)$ is an ([r,s], [t,u])-IVIFCS of Y. Since f is an ([r,s], [t,u])-IVIFG precontinuous mapping, $f^{-1}(cl_{[r,s],[t,u]}(A))$ is an ([r,s], [t,u])-IVIFGPCS of X. Since X is an IVIFPT_{1/2} space, $f^{-1}(cl_{[r,s],[t,u]}(A))$ is an ([r,s], [t,u])-IVIFPCS of X. Thus $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(cl_{[r,s],[t,u]}(A)))) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A))$. Hence $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(cl_{[r,s],[t,u]}(A))))$ $\subseteq f^{-1}(cl_{[r,s],[t,u]}(A)$.

(ii) \Rightarrow (iii). Let $A \in I^{Y}$. Then $A^{c} \in I^{Y}$. By (ii), $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A^{c}))) \subseteq f^{-1}(cl_{[r,s],[t,u]}(A^{c}))$. Thus $(int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A))))^{c} \subseteq I^{-1}(cl_{[r,s],[t,u]}(A^{c}))$.

$$(f^{-1}(int_{[r,s],[t,u]}(A)))^c$$
. Hence $f^{-1}(int_{[r,s],[t,u]}(A)) \subseteq int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(Cl_{[r,s],[t,u]$

(iii) \Rightarrow (i). It follows from Corollary 4.7.

13

THEOREM 4.9. Let (X, τ, τ^*) be an IVISTS and (Y, η, η^*) an IVIFPT_{1/2} space and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. Then the following statements are equivalent.

(i) f is an ([r, s], [t, u])-IVIFG preopen mapping.

(ii) $f(int_{[r,s],[t,u]}(A)) \subseteq gpint_{[r,s],[t,u]}(f(A))$ for each $A \in I^X$. (iii) $int_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(gpint_{[r,s],[t,u]}(A))$ for each $A \in I^Y$.

Proof. (i)⇒(ii). Let $A \in I^X$. Then $int_{[r,s],[t,u]}(A)$ is an ([r,s],[t,u])-IVIFOS of X. Since f is an ([r,s],[t,u])-IVIFG preopen mapping, $f(int_{[r,s],[t,u]}(A))$ is an ([r,s],[t,u])-IVIFGPOS of Y and $f(int_{[r,s],[t,u]}(A)) \subseteq f(A)$. By Definition 3.10, $f(int_{[r,s],[t,u]}(A)) \subseteq gpint_{[r,s],[t,u]}(f(A))$. (ii)⇒(iii). Let $A \in I^Y$. Then $f^{-1}(A) \in I^X$. By (ii), we have

$$f(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq gpint_{[r,s],[t,u]}(f(f^{-1}(A)))$$
$$\subseteq gpint_{[r,s],[t,u]}(A).$$

Hence

$$int_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(f(int_{[r,s],[t,u]}(f^{-1}(A))))$$
$$\subseteq f^{-1}(gpint_{[r,s],[t,u]}(A)).$$

(iii) \Rightarrow (i). Let A be an ([r, s], [t, u])-IVIFOS of X. Then $int_{[r,s],[t,u]}(A) = A$ and $f(A) \in I^Y$. Let $(f(A))^c \subseteq U$ and let U be an ([r, s], [t, u])-IVIFOS of Y. By (iii), we have

$$A = int_{[r,s],[t,u]}(A) \subseteq int_{[r,s],[t,u]}(f^{-1}(f(A)))$$

$$\subseteq f^{-1}(gpint_{[r,s],[t,u]}(f(A))).$$

Hence $f(A) \subseteq f(f^{-1}(gpint_{[r,s],[t,u]}(f(A)))) \subseteq gpint_{[r,s],[t,u]}(f(A))$ and so $(f(A))^c \supseteq (gpint_{[r,s],[t,u]}(f(A)))^c = gpcl_{[r,s],[t,u]}((f(A))^c)$. Thus $(f(A))^c = gpcl_{[r,s],[t,u]}((f(A))^c)$. Since Y is an IVIFPT_{1/2} space, $gpcl_{[r,s],[t,u]}((f(A))^c) = pcl_{[r,s],[t,u]}((f(A))^c)$. Hence $pcl_{[r,s],[t,u]}((f(A))^c) = (f(A))^c \subseteq U$. So $(f(A))^c$ is an ([r,s],[t,u])-IVIFGPCS of Y. Thus f(A) is an ([r,s],[t,u])-IVIFGPOS of Y. Therefore f is an ([r,s],[t,u])-IVIFG preopen mapping.

THEOREM 4.10. Let (X, τ, τ^*) be an IVISTS and (Y, η, η^*) an IVIFPT_{1/2} space and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. Then f is an ([r, s], [t, u])-IVIFG preclosed mapping if and only if $gpcl_{[r,s],[t,u]}(f(A)) \subseteq f(cl_{[r,s],[t,u]}(A))$ for each $A \in I^X$.

Proof. Suppose that f is an ([r, s], [t, u])-IVIFG preclosed mapping. Let $A \in I^X$. Then $cl_{[r,s],[t,u]}(A)$ is an ([r, s], [t, u])-IVIFCS of X. Since f is an ([r, s], [t, u])-IVIFG preclosed mapping, $f(cl_{[r,s],[t,u]}(A))$ is an ([r, s], [t, u])-IVIFGPCS of Y and $f(A) \subseteq f(cl_{[r,s],[t,u]}(A))$. By Definition 3.10, $gpcl_{[r,s],[t,u]}(f(A)) \subseteq f(cl_{[r,s],[t,u]}(A))$.

Conversely, suppose that $gpcl_{[r,s],[t,u]}(f(A)) \subseteq f(cl_{[r,s],[t,u]}(A))$ for each $A \in I^X$. Let A be an ([r, s], [t, u])-IVIFCS of X. Then $cl_{[r,s],[t,u]}(A) = A$. Let $f(A) \subseteq U$ and let U be an ([r, s], [t, u])-IVIFOS of Y. By hypothesis, $gpcl_{[r,s],[t,u]}(f(A)) \subseteq f(cl_{[r,s],[t,u]}(A)) = f(A)$. Thus $gpcl_{[r,s],[t,u]}(f(A)) = f(A)$. Since Y is an IVIFPT_{1/2} space, $gpcl_{[r,s],[t,u]}(f(A)) = pcl_{[r,s],[t,u]}(f(A))$. Hence $pcl_{[r,s],[t,u]}(f(A)) = f(A) \subseteq U$. Thus f(A) is an ([r, s], [t, u])-IVIFGPCS of Y. Therefore f is an ([r, s], [t, u])-IVIFG preclosed mapping.

THEOREM 4.11. Let (X, τ, τ^*) be an IVISTS and (Y, η, η^*) an IVIFPT_{1/2} space and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a bijective mapping. Then f is an ([r, s], [t, u])-IVIFG preclosed mapping if and only if $f^{-1}(gpcl_{[r,s],[t,u]}(A)) \subseteq cl_{[r,s],[t,u]}(f^{-1}(A))$ for each $A \in I^Y$.

Proof. Suppose that f is an ([r, s], [t, u])-IVIFG preclosed mapping. Let $A \in I^Y$. Then $cl_{[r,s],[t,u]}(f^{-1}(A))$ is an ([r, s], [t, u])-IVIFCS of X. Since f is an ([r, s], [t, u])-IVIFG preclosed mapping, $f(cl_{[r,s],[t,u]}(f^{-1}(A)))$ is an ([r, s], [t, u])-IVIFGPCS of Y. Since f is surjective, $A = f(f^{-1}(A)) \subseteq f(cl_{[r,s],[t,u]}(f^{-1}(A)))$. By Definition 3.10, $gpcl_{[r,s],[t,u]}(A) \subseteq f(cl_{[r,s],[t,u]}(f^{-1}(A)))$. Since f is injective, we have

$$f^{-1}(gpcl_{[r,s],[t,u]}(A)) \subseteq f^{-1}(f(cl_{[r,s],[t,u]}(f^{-1}(A))))$$

= $cl_{[r,s],[t,u]}(f^{-1}(A)).$

Conversely, suppose that $f^{-1}(gpcl_{[r,s],[t,u]}(A)) \subseteq cl_{[r,s],[t,u]}(f^{-1}(A))$ for each $A \in I^Y$. Let A be an ([r,s],[t,u])-IVIFCS of X. Then $cl_{[r,s],[t,u]}(A)$ = A. Let $f(A) \subseteq U$ and let U be an ([r,s],[t,u])-IVIFOS of Y. By

14

hypothesis and the injectivity of f, we have

$$f^{-1}(gpcl_{[r,s],[t,u]}(f(A))) \subseteq cl_{[r,s],[t,u]}(f^{-1}(f(A)))$$

= $cl_{[r,s],[t,u]}(A) = A.$

Since f is surjective, $gpcl_{[r,s],[t,u]}(f(A)) = f(f^{-1}(gpcl_{[r,s],[t,u]}(f(A)))) \subseteq f(A)$. Thus $gpcl_{[r,s],[t,u]}(f(A)) = f(A)$. Since Y is an IVIFPT_{1/2} space, $gpcl_{[r,s],[t,u]}(f(A)) = pcl_{[r,s],[t,u]}(f(A))$. Thus $pcl_{[r,s],[t,u]}(f(A)) = f(A) \subseteq U$. Hence f(A) is an ([r,s],[t,u])-IVIFGPCS of Y. Therefore f is an ([r,s],[t,u])-IVIFG preclosed mapping.

THEOREM 4.12. Let (X, τ, τ^*) be an $IVIFPT_{1/2}$ space and (Y, η, η^*) an IVISTS and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f: X \to Y$ be a mapping. Then the following statements are equivalent. (i) f is an ([r, s], [t, u])-IVIFG preirresolute mapping. (ii) $f(gpcl_{[r,s],[t,u]}(A)) \subseteq gpcl_{[r,s],[t,u]}(f(A))$ for each $A \in I^X$. (iii) $gpcl_{[r,s],[t,u]}(f^{-1}(A)) \subseteq f^{-1}(gpcl_{[r,s],[t,u]}(A))$ for each $A \in I^Y$. (iv) $f^{-1}(gpint_{[r,s],[t,u]}(A)) \subseteq gpint_{[r,s],[t,u]}(f^{-1}(A))$ for each $A \in I^Y$.

Proof. (i) \Rightarrow (ii). Let $A \in I^X$. Then $f(A) \in I^Y$. Since f is an ([r, s], [t, u])-IVIFG preirresolute mapping, we have

$$\begin{split} f^{-1}(gpcl_{[r,s],[t,u]}(f(A))) &= f^{-1}(\cap\{K \in I^Y : f(A) \subseteq K, \ K \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\}) \\ &\supseteq f^{-1}(\cap\{K \in I^Y : A \subseteq f^{-1}(K), \ K \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\}) \\ &= \cap\{f^{-1}(K) \in I^X : A \subseteq f^{-1}(K), \ K \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\} \\ &\supseteq \cap\{f^{-1}(K) \in I^X : A \subseteq f^{-1}(K), \ f^{-1}(K) \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\} \\ &\supseteq \cap\{W \in I^X : A \subseteq W, \ W \text{ is an } ([r,s],[t,u])\text{-IVIFGPCS}\} \\ &= gpcl_{[r,s],[t,u]}(A). \end{split}$$

Hence

$$f(gpcl_{[r,s],[t,u]}(A)) \subseteq f(f^{-1}(gpcl_{[r,s],[t,u]}(f(A))))$$
$$\subseteq gpcl_{[r,s],[t,u]}(f(A)).$$

The proofs of (ii) \Rightarrow (iii), (iii) \Rightarrow (iv) and (iv) \Rightarrow (i) are similar to Theorem 4.5.

THEOREM 4.13. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. If $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq f^{-1}(gpcl_{[r,s],[t,u]}(A))$ for each $A \in I^Y$, then f is an ([r, s], [t, u])-IVIFG preirresolute mapping.

Proof. It is similar to Theorem 4.6.

We can obtain the following corollary from Theorem 4.13.

COROLLARY 4.14. Let (X, τ, τ^*) and (Y, η, η^*) be two IVISTSs and $[r, s] \in D(I_0), [t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f : X \to Y$ be a mapping. If $f^{-1}(gpint_{[r,s],[t,u]}(A)) \subseteq int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A)))$ for each $A \in I^Y$, then f is an ([r, s], [t, u])-IVIFG preirresolute mapping.

THEOREM 4.15. Let (X, τ, τ^*) be an $IVIFPT_{1/2}$ space and (Y, η, η^*) an IVISTS and $[r, s] \in D(I_0)$, $[t, u] \in D(I_1)$ with $s + u \leq 1$ and let $f: X \to Y$ be a mapping. Then the following statements are equivalent. (i) f is an ([r, s], [t, u])-IVIFG preirresolute mapping.

(ii) $gpcl_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A)))) \subseteq f^{-1}(A)$ for each ([r,s], [t,u])-IVIFGPCS A of Y.

(iii) $f^{-1}(A) \subseteq gpint_{[r,s],[t,u]}(int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A))))$ for each ([r,s], [t,u])-IVIFGPOS A of Y.

Proof. (i)⇒(ii). Let A be an ([r, s], [t, u])-IVIFGPCS of Y. Since f is an ([r, s], [t, u])-IVIFG preirresolute mapping, $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFGPCS of X and so $gpcl_{[r,s],[t,u]}(f^{-1}(A)) = f^{-1}(A)$. Since X is an IVIFPT_{1/2} space, $f^{-1}(A)$ is an ([r, s], [t, u])-IVIFPCS of X and so $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))) \subseteq f^{-1}(A)$. Hence

> $gpcl_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A)))))$ $\subseteq gpcl_{[r,s],[t,u]}(f^{-1}(A)) = f^{-1}(A).$

 $\begin{array}{l} (\mathrm{ii}) \Rightarrow (\mathrm{iii}). \ \mathrm{Let} \ A \ \mathrm{be} \ \mathrm{an} \ ([r,s],[t,u]) \text{-}\mathrm{IVIFGPOS} \ \mathrm{of} \ Y. \ \mathrm{Then} \ A^c \ \mathrm{is} \ \mathrm{an} \\ ([r,s],[t,u]) \text{-}\mathrm{IVIFGPCS} \ \mathrm{of} \ Y. \ \mathrm{By} \ (\mathrm{ii}), \ gpcl_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A^c)))) \\ (A^c)))) \subseteq \ f^{-1}(A^c). \ \mathrm{Thus} \ (gpint_{[r,s],[t,u]}(int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A)))))^c \subseteq \\ (f^{-1}(A))^c. \ \mathrm{Hence} \ f^{-1}(A) \subseteq gpint_{[r,s],[t,u]}(int_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(f^{-1}(A)))). \end{array}$

 $\begin{array}{l} (\text{iii}) \Rightarrow (\text{i}). \text{ Let } A \text{ be an } ([r,s],[t,u])\text{-IVIFGPCS of } Y. \text{ Then } A^c \text{ is an } \\ ([r,s],[t,u])\text{-IVIFGPOS of } Y. \text{ By } (\text{iii}), \ f^{-1}(A^c) \subseteq gpint_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))))) \\ (f^{-1}(A)))))^c. \text{ Hence } gpcl_{[r,s],[t,u]}(cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A))))) \\ \text{Since } cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A)))) \subseteq gpcl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A)))) \\ \end{array}$

(A)))), $cl_{[r,s],[t,u]}(int_{[r,s],[t,u]}(f^{-1}(A)))) \subseteq f^{-1}(A)$. Hence $f^{-1}(A)$ is an ([r,s], [t,u])-IVIFPCS of X and so $f^{-1}(A)$ is an ([r,s], [t,u])-IVIFGPCS of X. Therefore f is an ([r,s], [t,u])-IVIFG preirresolute mapping.

17

References

- K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1) (1986), 87–96.
- [2] K. Atanassov and G. Gargov, Interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems **31** (3) (1989), 343–349.
- [3] R. Badard, Smooth axiomatics, First IFSA Congress, Palma de Mallorca (July 1986).
- [4] A. S. Bin Shahna, On fuzzy strong continuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), 303–308.
- [5] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. 24 (1968), 182–190.
- [6] K. C. Chattopadhyay, R. N. Hazra and S. K. Samanta, Gradation of openness:fuzzy topology, Fuzzy Sets and Systems 49 (1992), 237–242.
- [7] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [8] T. Fukutake, R. K. Saraf, M. Caldas and S. Mishra, *Mappings via Fgp-closed sets*, Bull. of Fukuoka Univ. of Edu. Vol. 52, Part III (2003), 11–20.
- R. N. Hazra, S. K. Samanta and K. C. Chattopadhyay, *Fuzzy topology redefined*, Fuzzy Sets and Systems 45 (1992), 79–82.
- [10] T. K. Mondal and S. K. Samanta, On intuitionistic gradation of openness, Fuzzy Sets and Systems 131 (2002), 323–336.
- [11] T. K. Mondal and S. K. Samanta, *Topology of interval-valued fuzzy sets*, Indian J. Pure Appl. Math. **30** (1) (1999), 23–38.
- [12] T. K. Mondal and S. K. Samanta, Topology of interval-valued intuitionistic fuzzy sets, Fuzzy Sets and Systems 119 (2001), 483–494.
- [13] C. K. Park, Interval-valued intuitionistic gradation of openness, Korean J. Math. 24 (1) (2016), 27–40.
- [14] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375.
- [15] S. K. Samanta and T. K. Mondal, Intuitionistic gradation of openness: intuitionistic fuzzy topology, Busefal 73 (1997), 8–17.
- [16] L. A. Zadeh, *Fuzzy sets*, Inform. and Control 8 (1965), 338–353.
- [17] L. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, Inform. Sci. 8 (1975), 199–249.

Chun-Kee Park

Department of Mathematics Kangwon National University Chuncheon 24341, Korea *E-mail*: ckpark@kangwon.ac.kr