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STRONG CONVERGENCE OF AN ITERATIVE
ALGORITHM FOR A CLASS OF NONLINEAR
SET-VALUED VARIATIONAL INCLUSIONS

XIE PING DING AND SALAHUDDIN

ABSTRACT. In this communication, we introduce an Ishikawa type
iterative algorithm for finding the approximate solutions of a class of
nonlinear set valued variational inclusion problems. We also estab-
lish a characterization of strong convergence of this iterative tech-
niques.

1. Introduction

The variational inequalities were initially studied by Kinderlehrer
and Stampacchia [1]. Since then, they have been widely investigated.
They cover partial differential equations, optimal controls, optimiza-
tions, mathematical programming, mechanics, economics, transporta-
tion and finances, see [2-9]. In 1994, Hassouni and Moudafi [10] intro-
duced a class of variational inequalities which includes various classes
of variational inequalities as special cases. Since then, there are a great
number of numerical methods for solving various variational inequalities
and variational inclusions. It is well known that monotonicity, accre-
tivity of the underlying operators and their generalizations plays indis-
pensable roles for solving the generalized variational inequalities and
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generalized variational inclusions. For example, see [11-41].

Let X be a real Banach space with norm || - ||, X* be the topological
dual space of X and (-,-) be the generalized duality pairing between X
and X*. Let J denote the normalized duality mapping from X to 2%
defined by

Jo={fe Xz, f) = llzl - LA = )}, 2 € &

In this work, we shall denote the single valued normalized duality map-
ping by 7. It is well known that if X" is a smooth then j is a single valued.
Also we denote by H(-,-), the Hausdorff metric on C'B(X') defined by

H(A, B) = max{sup,¢pinfycad(x,y), sup,csinfyepd(z,y)}, A, B € CB(X)

where CB(X) denote the family of all nonempty closed and bounded
subsets of X

DEFINITION 1.1 A set valued mapping A : D(A) C X — 2% is said
to be

(i) accretive, if for any z,y € D(A), there exists j(z —y) € J(z —y)
such that for all u € Az,v € Ay
(u=v,j(x—y) =0
(ii) strictly accretive if A is accretive and
(u—wv,j(x —y)) =0 if and only if x = y;

(iii) m-accretive if A is accretive and (I + pA)(D(A)) = X for every
p > 0 where I is an identity mapping;
(iv) ¢-strongly accretive if for any x,y € D(A) there exists j(z — y) €
J(x — y) such that for all u € Az and v € Ay
(u—v,j(x—y)) = o(lz—ylDllz -y,

where ¢ : [0,00) — [0, 00) is a strictly increasing continuous func-
tion with ¢(0) = 0;
(v) ¢-expansive, if any x,y € D(A),u € Ax and v € Ay

lu = vl = o[l = ylD).

REMARK 1.1
(i) If A is ¢-strongly accretive then A is ¢-expansive.
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(ii) If X = H is a Hilbert space, then A is m-accretive if and only
if A is maximal monotone. A is said to be maximal monotone
if its graph is not properly contained in the graph of any other
monotone mapping. In addition, the concepts of accretiveness and
strong accretiveness reduce to the one of monotonicity and strong
monotonicity, respectively.

DEFINITION 1.2 A mapping 7 : X — C'B(X) is said to be

(i) H-continuous if for any given € > 0 and each & € X there exists a
d = (e, ) > 0 such that whenever ||z — y|| < 0 then

H(Tz,Ty) <,

(ii) H-uniformly continuous if for any given ¢ > 0 there exists a § =
d(€) > 0 such that whenever ||z — y|| < then

H(Tx,Ty) < e.

DEFINITION 1.3 [34] A mapping T : X — 2% is called

(i) lower semi continuous if T-! = {z € E: Tx NV # (0} is open in
X whenever V' C X is open;

(ii) v — H-generalized Lipschitz continuous if there exists a constant
~v > 0 such that for all z,y € X

H(Tx, Ty) < (1 + [lz = yl]).

DEFINITION 1.4 A mapping N : X x X — X is said to be ¢-strongly
accretive with respect to 7' : X — C'B(X) in the first argument if for
any z,y € D(T) there exists j(z —y) € J(z — y) such that for all
zeX,ueTrandveTy

(N(u,2) = N(v,2),5(x —y)) = oz —ylDllz —yll,

where ¢ : [0,00) — [0,00) is a strictly increasing continuous function
with ¢(0) = 0.

DEFINITION 1.5 Let X be a uniformly smooth Banach space and let
N :XxX---X — X be a single valued mapping. N is said to be
N————

I
(&1,&, -+, &)-mixed Lipschitz continuous if there exist constants & >
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0, i=1,2,--- .l such that
||N(ZL‘1,ZE2,"' axl) _N(y17y27"' ayl)H

l
< illwi = will, Yoy € X, (6= 1,2, D).
i=1
LEMMA 1.1 [33] Let X be a real smooth Banach space, then for any
r,ye X
lz +yll* < ll=]* + 2y, j(= + ),
where j : X — X* 1s a normalized duality mapping on X.

LEMMA 1.2 [30] Let X be a real smooth Banach space. Let T, F :
X — 2% be the two set valued mappings and N(-,-) : X x X — X be a
nonlinear mapping satisfying the following conditions:

(i) the mapping x — N(x,y) is ¢-strongly accretive with respect to the

mapping T,
(i1) the mapping y — N(z,y) is accretive with respect to the mapping
F

Then the mapping S : X — 2% defined by Sz = N(Tx, Fx) is ¢-strongly
accretive mapping.

LEMMA 1.3 [26] Let X be a real Banach space and S : X — 2¥\{¢}
be a lower semi continuous and ¢-strongly accretive mapping. Then for
any x € X, Sx is a one point set, i.e., S is a single valued mapping.

LEMMA 1.4 [41] Let X be a metric space, T : X — CB(X) be a
set valued mapping. Therefore for any given € > 0 and for any given
x,y € X,u € Tz, there exists v € Ty such that,

d(u,v) < (1+e)H(Tx, Ty)
where H(-,-) is a Hausdorff metric on CB(X).

Let T1,Ty,--- ,17; : X — CB(X) be the set valued mappings and

N:X xX---X — X be the nonlinear mapping. Let F : X — 2% be
l

a set valued mapping and let A : D(A) C X — 2% be a m-accretive

mapping and let g : X — D(A) and h : X — X be the single valued

mappings. In this paper, we will consider the following nonlinear set
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valued variational inclusion problems: for any given f € X, A > 0,
finding z € D(A) such that (z,wy, ---w;,v) is a solution set of

(1.1) f € h()+ N(wy,wa, - ,w) + MNA(g(x)))
for any w; € T;(z),i=1,2,--- ,l and v € F(z).

2. Main Results

In this section, we define an Ishikawa type iterative algorithm for
solving the nonlinear set valued variational inclusion problems (1.1).
Moreover, we give a characterization of strong convergence of this algo-
rithm to the solutions set of the nonlinear set valued variational inclusion
problems (1.1)

ALGORITHM 2.1 Let € > 0 be a some given number. Let X be a
real smooth Banach space. Let A : D(A) C X — 2% be a m-accretive
mapping, g : X — D(A) and h : X — X be the single valued mappings.
Let F: X - CB(X) and T, Ty, -+ , T, : X — CB(X) be the set valued
mappings and N : X x X--- X — X be the nonlinear mapping. Let

—_——

l
{a,}52, and {5, }5°, be the two sequences in [0, 1]. For any given initial
zg € D(A),Wo; € Ti(xg), i =1,2,--- ,1,Tp € F(z0) and Ty € A(g(zo))
define by

Yo = (1 = Bo)xo + Bo(f + zo — h(V,) — N(Wo,1,Wo 2, -+ ,Wo,) — Alp).
Since Ty € A(g(xo)), by Lemma 1.4, there exists uy € A(g(yo)) such that
I — woll < (1+€) H(A(g(x0)), Alg(w0))).

Woi € Ti(x0), wo.: € Ti(yo)
W0 — wosl| < (14 ¢€) H(Ti(xo0), Ti(vo)), for i =1,2,---1,
and Ty € F(x),v0 € F(yo)
170 — voll < (1 +€) H(F(x0), F(yo))-

For any given wy; € Ti(yo), i = 1,2,--- ,land up € A(9(v0)),vo € F(yo),
define

T = (]. — Oéo)l’(] -+ Oé()(f + Yo — h(Uo) — N(wo’l, cee ;w(],l> — )\Uo)
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Since wy € A(g(zo)), by Lemma 1.4, there exists u; € A(g(x1)) such
that

[0 — || < (1 +¢€) H(A(g(20)), Alg(21))),
Wo,; € Ti(xo), w1, € Ti(x1)

[Wo; — Wil < (1+ €) H(Ti(wo), Ti(w1)), fori=1,2,---1,
and vy € F(x),v; € F(x1)
[To =l < (14 €) H(F(x0), F(21))-
For any given wy ; € T;(x1), define
1= (1= pr)ay + Bu(f + 21 — WD) = N(Wy1, W19, ,Wiy) — ANUy).
Since u; € A(g(x1)), by Lemma 1.4, there exists u; € A(g(y1)) such that
[y — ]l < (1+€) H(A(g(x1)), Alg(y1))),

[@1 — wia|l < (1 +€) H(Ti(21), Ti(yr)), for i =1,2,---1,
and U1 € F(x1),v € F(y1)
[71 = il < (1) H(F (1), F ().

For any given wy; € Ti(v1), i = 1,2,--- ;land uy € A(g(v1)),v1 € F(y1),
define

ry = (1 —ar)zy +ar(f +y1 — h(vr) = N(wi g, wig) — ).

Continuing in this way, we can compute the sequences {x,, }>°,, {v,}22,
and {wy;}22,, ¢ = 1,2,---,1 by the iterative schemes such that for
n=0,1,2,3--

(1)
Tny1 = (1 — o)y + an(f + yn — h(vn) — N(wp, -+, wny) — Aiy),
for w; € Ti(yn), i = 1,2, v, € F(yn), un € A(g(yn));
(i)
Yn = (1= Bn)@n + Bu(f + 20 = W) = N(@n,1, Wn 2, -, W 1) = i),

for any w,,; € Ti(z,), i« = 1,2,---,,v, € F(z,) and @, €
A(g(xn));
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(iii) @, € A(g(xn)), un € A(g(yn))
[ — unll < (14 €) H(A(g(xn)), Alg(yn)));
Wy, € TZ(In)7 Wn,i € Tz(?/n)
[@n,i = wnill < (1+€) H(Ti(2n), Tiyn)), fori=1,2,---1,
and v, € F(x,), v, € F(yn)
[Tn — vall < (1 +€) H(E(2n), Fyn));
(iv) Un € A(g(zn)), Unt1 € A(g(Tn+41))
[Un — Ungall < (14 €) H(A(g(xn)), A(g(2n11))),
Wn; € Ti(20), Wnt1,i € Ti(XTnt1):
|[Wni — Wniral| < (14 €) H(Ti(zn), Ti(py1)), fori=1,2,---1,
and 7, € F(x,),Upt1 € F(xn11)
[On = npa |l < (1 +€) H(F(2n), F(2ni1))-
The sequences {x,}>,, {v,}22, and {w,;}32,,7 = 1,2,---,1 defined

by (i)-(iv) is called the Ishikawa type iterative sequences.

THEOREM 2.1 Let X be a real smooth Banach space. LetTy,T5,--- 1} :
X — CB(X) and A : D(A) C X — 2% be the set valued map-
pings. Let g : X — D(A) and h : X — X be the single valued
mappings. Let F : X — CB(X) be the set valued mapping and let
N: XXX---X = X be a single valued continuous mapping satisfying
—_——

l
the following conditions:

(i) Aog : X — 2% is m-accretive and H-uniformly continuous map-

ping;

(ii) 71, Ty, - -+ , 1) : X — CB(X) is lower semi continuous and ~; — H-
Lipschitz continuous mapping for v =1,2,--- 1

(iii) the mapping x1 — N(x1, 29, -+ ,3) is ¢p-strongly accretive and &;-

mixed Lipschitz continuous mapping with constants & > 0, 1 =
1,2, 1 with respect to T; where ¢ : [0,00) — [0,00) is a strictly
increasing function with ¢(0) = 0;

(iv) the mapping x — N(Tyz,--- , Tiz) is uniformly continuous;

(v) h is §-Lipschitz continuous mapping;

(vi) F': X = CB(X) be the lower semi continuous and n— H-Lipschitz
continuous mapping,
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Suppose {a,}22, and {3,}52, are the sequences in [0, 1] such that
ZZO:O a, = 00, lim,_, a, = 0 and lim,,_,, 5, = 0. Then the sequences
{03520, {wni}2y, i =1,2,--- L and {v,}32, generated by Algorithm
2.1 converges strongly to z* € X, if and only if the sequences {x, }5°,
{wni}nzo, {vntnzo, {H(Alg(zn)), Alg(x))) Frlo, {H(Ti(zn), Ti(z")) Folo,
{H(F(x,), F(x*))}2,, i = 1,2,--- ,1 are bounded where for any u* €
A(g(x*)),v* € F(z*) € X,wf € Ty(z*) € X, (¢, wf,v*), i =1,2,---1
is a solution set of nonlinear set valued variational inclusion problems
(1.1).

Proof. Let x* € X such that f € h(v)+ N(wy,--- ,w;)+ NAog(x*) for
any w; € Ti(z*),v € F(z*),i =1,2,-- -1, whose existence is guaranted by
[35, Theorem 3.1] without loss of generality, we may assume that f =0
and A = 1. Take w} € T;(2*),i = 1,2,---1, and u* € A(g(z*)),v* €
F(z*) such that

0=h")+ N(wj, - ,w)+u"
NECESSITY.
Suppose that
|zn, —2*|| = 0 as n — oo.
Therefore, from the H-uniform continuity of Aog,

H(A(g(x,)), A(g(z*))) — 0 as n — oo.
Again from
|wn; —wi|| >0asn —oofori=12--- 1
v, — v*|| = 0 as n — oo,
it follows from the H-uniform continuity of 7; and F' that
H(Ti(z,), Ty(z")) = 0 as n — oo, for i = 1,2, 1,
H(F(x,), F(z*)) = 0 as n — oo.

Thus the sequences {2, }72, {vn }nZo, {wn.itnzo, {H(A(g(zn)), Alg(27))) } 70,
{H(T(z,), T;(z*)) }ooy for i = 1,2,- -+ |1
and {H(F(x,), F(2*))}52, are all bounded.

SUFFICIENCY.
Suppose that the sequences {ﬂfn}zo:o’ {wn,i}?zo:m {H (A(g(xn))a A(Q('r*)))}?zo:m
[Ty (), @) 120, TH(F (), F(a*))}oeg for i = 1,2, - 1, are all
bounded. Then we divide the proof of the sufficiency into five steps:
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STEP 1. We claim that the sequences {w,,; }22 o, {Wn }22 0, {0}y, @ =
1,2,--- ,lare bounded. Indeed by Nadler’s Theorem for each n > 0 there
exist w; € Ti(z*),i=1,2,---,1,v € F(z*) and w € A(g(x*)) such that

[an =l < (14 €) H(A(g(zn)), Alg(2")));
[Tn =l < (1 4 €) H(F(zn), F(z7)).
Since T; : X — CB(X) is ; — H-generalized Lipschitz continuous and

F: X — CB(X) is n — H-generalized Lipschitz continuous mapping, we
have

[ni = wil| < [[wn; —wil| + [Jw; —wi|
< (T4 &) H(Ti(wn), Ti(2")) + diam(T3(27)), = 1,2,---
(2.2) < (L4 €)%l + [lzg — 27|) + diam(T;(2")), i = 1,2,--- 1
[on = %[ < [on =l + [lv* -7
< (1+4¢€) H(F(z,), F(z")) + diam(F(z"))
(2.3) < (1+enl+ ||z, — %) + diam(F(z")).
Thus the sequences {W,;}2 . {U,}52, are bounded. Also, we note that
[t — || < [fun — ] + [[u” —
< (1+¢€) H(A(g(zn)), Alg(z7))) + diam(A(g(z7)))
(2.4) < (1 +6) (1 + [[A(g(zn)) — A(g(z"))]) + diam(A(g(z"))).

Hence the sequence {u,}5°, is a bounded.

STEP 2. We claim that ||y, — z,|| — 0 as n — oo. Indeed, since
the mapping © — N(wy, we - - -wy;) is & — H-mixed Lipschitz continuous
mapping with respect to 7;,7 = 1,2,---1 and from Algorithm 2.1, we
have

[9n = @nll = 1| = Bu(h(On) + N(@n1, -+, Wni) + W)
< Balla(n) =h(W)[+BulN (w1, - -+ w)) =N (Wn,1, - - - Wit) ||[+5n][tn—u"]]
< Bud||[vn — v*[| + Bu(IN @n,1, - - Wiyg) = N(w], W2 -+ W)
+o N, W) = N(wis - w)[]) + B[t — o
< Budl[vn — 0"l 4 Bu(&ullwn,1, —wil + - - + &l @ns — will) + Bul[tn —u]),
which implies that ||y, — z,| — 0 as n — oco.
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STEP 3. We claim that the sequences {v, }22 o, {wn 11220, - - {wni 520,
{un}22, are bounded. Indeed by Algorithm 2.1(iii), we have

[[en | < [ = |+ [l

(2.5) < (1+¢) H(A(9(zn)), A(g(yn))) + [[Unl]-
[wnill < [Wni — wail + [[Wnil
(2.6) < (14 ¢) H(Ti(zn), Ti(yn)) + |nsll, for i =1,2,--- 1.
[vall < [[9n = vall + [[Da]]
(2.7) < (1 +¢€) H(F(2n), F(yn) + [[0nll-

From step 2 and H-uniform continuity of Aog,T;, and F, we have
H(A(g(xn)), Alg(yn)

H(T'z(xn)airz«gn ) —+0asn— o0, for i = 1727"' 7l;

H(F(z,), F(yn)) — 0 as n — oc.
Hence the sequences {H(A(g(n)), A(9(yn))) }oZo, {H(Ti(zn), Ti(yn)) Yolo:
{H(F(x,), Fyn))}o2, for i = 1,2--- [ are bounded. Thus it follows
from the boundedness of {1, } 52 o, {W,; } 02, {Un }72 and (2.1) that {u, }72,,
{wn 122 ,{vn}r, are bounded for i =1,2,--- [
On there hand, by Nadler’s Theorem for each n > 0 there exists w; €
Ti(z*),i=1,2,---1,v € F(z*) such that

[on =]l < (14 €) H(F(yn), F(z7));
Observe that

) — 0 asn — oo;

~— —

lwni = will < fJwni = @il + [Jw; = wi
< (1+ &) H(Ti(yn), Ti(x")) + diam(T3(27))
< (T4 €)%l + llyn — 2*|]) + diam(T;(27)), fori=1,2,--- 1.

[on = %[ < [lon =l + v — o7
< (1+¢€) H(F(yn), F(z*)) + diam(F(z"))
< (T +e)n(l+ llyn — 27|)) + diam(F(27)).
Since the sequence {x,}>° is bounded and ||y, — x,|| — 0 as n — oo,

so {yn}52, is bounded. Hence {w,;}5°,, i =1,2,---1 and {v,}2, are
bounded.



Strong convergence of an iterative algorithm 29

STEP 4. We claim that
17(v)+N (W1, -+ Wag)Fttn—h(Ung1) =N W11, Wt1,0) = U || = 0
as n — 00. Since
[[7(vn) = R(v%)|| < 8|vn — o7
and
IN(wn, - wn) =N(wi, - wp)l] < &llwn g —will4 -+ &[wn—wf]|.

It follows from the boundedness of {v, }7° o, {wni}5y, @ =1,2---1, that
{h(vy)}22 o and {N(wy1, -+, wn)}22, are bounded. Furthermore, from
Algorithm 2.1 (i) we deduce that as n — oo,

”In—l-l - an = O‘nHyn —Tp — h(vn) - N(wn,la e 'wn,l> - Un”
< Wllyn — Tn |l + @l |P(vn) + N(wWp1, - Wny) + Uy — 0
and hence
[9n = Zogall < NYyn — 2ol + (|20 — Tppa]| = 0.

From [36], the mapping © — h(F(z)) and = — N(Ty(z),---,T;(z))
are single valued. Thus from condition (vii) and ||y, — T, 1|| — 0 as
(n — o0), we conclude that as n — oo

(2.8) | N(wn1, - wng) — N@ni11, - Wntry)]| = 0.

On the other hand, Algorithm 2.1 and the H-uniform continuity of Aog,
we conclude that as n — oo,

(2.9)

[

< Mt = TUnl| + [T — Tpga [

< (1+¢€) H(A(g(yn)), Alg(zn))) + (L +€) H(A(g(wn)), A(g(Tn11))) — 0.

Therefore from (2.7) and (2.8), the assertion is valid.

STEP 5. We claim that the sequence {z,}°, converges strongly to
z*. Indeed from [34], the set valued mapping
z — h(F(z)) + N(Ti(z), -, Ti(x)) + Alg(z))

is ¢-strongly accretive mapping. Hence, we have
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<xn+1 - h<@n+1> - N<wn+1,17 e 7wn+1,l) - an—l—l - (l’* - h(U*)
NG ) — ), (T — 7))
(210) S H$n+1 - x*”Z - <h(ﬁn+l) + N(wnJrl,l? T 7wn+1,l) +ﬂn+1

= (h(v") + N(wi, - wp) + u”), j(Tn0 — 27))

< lns = 21 = ¢llznr — 2" D llznsr — 27|

We observe that from Algorithm 2.1 (i), Lemma 1.6 and (2.9)

(2.11)
41 — 2|
=1 = ) (@n = %) + an(yn — 2 — h(vn) = N(wn1, -+ ,wn) — )|
< (1= an)?|lzn — 2%|1* + 200 (Y — 7 — h(vy) — N(wp 1, 5 wny)
— Upy J(Tny1 — T7))
< (1= an)?llen — 2”4 200y — h(va) = N (w1, - -+, wn1)
— Up = (Tnt1 = h(Op41) = N@ni1,1, 0+ Wnt1g) = Unr1), J (@1 — 7))
+ 20 (Tn1 — h(Vns1) = N@pi11, 0 Wog1g) — U1 — (7 — h(07)
= N(wi, - wy) —u*), j(@p1 — 2%))
< (1= an)?[ln — 21”4 200mlyn — h(vn) = N(wp, -+ wng) = tn = (Tn1
— WOps1) = N@ni11, W) = Unat) [ |01 — 27| + 200|240 — 27|

= 200 ¢([|[Tnpr = 2|l 2na — 27|

Since {x,}%, is bounded, we have
M = sup{||z, —2*|| : n > 0} < o0.

Note that «,, — 0 as n — oo. Thus without loss of generality, we may
assume that 1 —2a,, > 0 for all n > 0. Hence it follows from (2.10) that
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(2.12)
21 — 2|
(1 - an)Q 2 2CKn
— Nl =T+ ———lyn — - N
S 2, |zn — 2*||* + 1—2%“‘% h(vy) (W, W)
— Uy — (Tng1 — M(Tps1) = N@ns11, s Wns1g) — Ut ||| Tnsr — 7|
20, . i}
— 79 Ulzn = 2 Dllzn — 27|

20, M3«

S Hl’n—l'*Hz—i- { 2 - +M’|yn_h(vn) _N(wn,la"' 7wn,l)

1-—2aq,
— Up — (mn-‘rl - h(ﬂn—l—l) - N(En—l—l,l» Tt 7wn+1,l> - En—&—l)”}
2an * *
~ 0l = Dl — )|

Next, we discuss two possible cases:

CAsi(1).
inf{||zp1 — 2| :n >0} =0 > 0.
From step 4, we have
M2an + 2M||yn - h(vn) - N(wn,la T awn,l) — Up — (:En+1 - h(ﬁn—i—l)

— N(Wnt11,  Wnt1y) — Unt1)|| = 0 as n — oo.
Hence there exists a possible integer Ny such that for all n > Ny,
(2.13)
M?ay, + 2M ||y, — h(vn) — N(wn1, - wny) — Un — (Tpy1 — h(Tpi)
= N(@pt1,15 7+ s Wat11) — Unt) |
< ¢(0)o.
Thus, it follows from (2.11) and (2.12) that
s = "I < o a° [+ (o) = (o)
< o — 2" = 7—2—0(0)o.
1—-2a,

which implies that

o0

¢(o)o Z TN, — 2 ||* < 0.

n=Np
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This contradicts Y >, a, = co. Therefore case (1) is false.

CASE(2).
inf{||zps1 — 2| :m >0} =0.

In this case, there exists a subsequence {x,,,,} C {z,} such that

|Zn, ., — 2| = 0as j — oo,

Hence, for any given € > 0 there exists a positive integer n; such that

for all n > n;

||xnj+1 - I'*H S €
(2.14)

M?a,, + 2M |y, — h(vy) — N(wp 1, s Wpy) — Uy —

We claim that
|Tn, 0 — 27 <&, VM > 1.

Indeed, we prove that

|Tn, ., — 2| < e
If this false then

HxanrQ - ZL'*H > €.
Hence, we have

O(lzn,,. — 27[) = (e).

Thus, it follow from (2.11) that

Ny, .
82 < ||xnj+2 —13*H2 < H'rnj+1 _I*HQ_FLQZ&(&?)‘E_

1 —=2ap,,,
_ |12 anj+l
= I =1~ e

< ||Inj+1 - LL’*H2 < 62‘
This contradict to show that
Hznﬁz - IB*H < e
By induction we can show that
|Tn 0 — 2% <&, Vm > 1.

Hence
|zn —2*|] = 0 as n — 0.

($n+1 - h(ﬂn+1>

—NW@Wpt11, s Wot1,) — Un1)|| < ()€

1—
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This completes the proof. O
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