Korean J. Math. **25** (2017), No. 1, pp. 61–70 http://dx.doi.org/10.11568/kjm.2017.25.1.61

ON STATISTICALLY SEQUENTIALLY QUOTIENT MAPS

V. Renukadevi^{*} and B. Prakash[†]

ABSTRACT. In this paper, we introduce the concept of statistically sequentially quotient map which is a generalization of sequence covering map and discuss the relation with covering maps by some examples. Using this concept, we give an affirmative answer for a question by Fucai Lin and Shou Lin.

1. Introduction

Finding the internal characterizations of certain images of metric spaces is one of the central questions in general topology [8–10,12,16,22]. In 1971, Siwiec [20] introduced the concept of sequence covering maps which is closely related to the question about compact-covering and simages of metric spaces. Lin and Yan in [15] proved that each sequence-covering and compact map on metric spaces is an 1-sequence covering map. Later Lin Fucai and Lin Shou in [13] proved that each sequence-covering and boundary-compact map on metric spaces is an 1-sequence covering map and posed Question 1 below. In [14], they answered this

* Corresponding author.

© The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

Received November 3, 2016. Revised February 9, 2017. Accepted February 28, 2017.

²⁰¹⁰ Mathematics Subject Classification: 54C10, 54D30, 54D55, 97I30, 54E40, 54A20.

Key words and phrases: sequence covering, 1-sequence covering, sequentially quotient, sn-network, boundary compact map.

[†] The research is supported by the Council of Scientific & Industrial Research Fellowship in Sciences (CSIR, New Delhi) for Meritorious Students, India.

question. In this paper, we consider a similar question for statistically sequentially quotient and boundary-compact maps and prove the main result Theorem 1.

QUESTION 1.1. [13] Let $f : X \to Y$ be a sequence-covering and boundary-compact map. Is f an 1-sequence-covering map, if X is a space with a point-countable base or a developable space?

THEOREM 1. Let $f : X \to Y$ be a statistically sequentially quotient and boundary-compact map. Suppose also that at least one of the following conditions holds:

(1) X has a point-countable base;

(2) X is a developable space.

Then f is an 1-sequence-covering map.

Throughout this paper, all spaces are T_2 , all maps are continuous and onto, and \mathbb{N} is the set of positive integers. $x_n \to x$ denote a sequence $\{x_n\}$ converging to x. Let X be a space and $P \subset X$. A sequence $\{x_n\}$ converging to x in X is eventually in P if $\{x_n \mid n > k\} \cup \{x\} \subset P$ for some $k \in \mathbb{N}$; it is frequently in P if $\{x_{n_k}\}$ is eventually in P for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. Let \mathcal{P} be a family of subsets of X. Then $\cup \mathcal{P}$ and $\cap \mathcal{P}$ denote the union $\cup \{P \mid P \in \mathcal{P}\}$ and the intersection $\cap \{P \mid P \in \mathcal{P}\}$, respectively.

DEFINITION 1.2. Let X be a space and $P \subset X$.

- (a) Let $x \in P$. *P* is called a *sequential neighborhood* [6] of *x* in *X* if whenever $\{x_n\}$ is a sequence converging to the point *x*, then $\{x_n\}$ is eventually in *P*.
- (b) P is called a sequentially open [6] subset in X if P is a sequential neighborhood of x in X for each $x \in P$.

DEFINITION 1.3. Let (X, τ) be a topological space. We define a *sequential closure-topology* σ_{τ} [6] on X as follows: $O \in \sigma_{\tau}$ if and only if O is a sequentially open subset in (X, τ) . The topological space (X, σ_{τ}) is denoted by σX .

DEFINITION 1.4. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x \mid x \in X\}$ be a cover of a space X such that for each $x \in X$, the following conditions (a) and (b) are satisfied:

- (a) \mathcal{P}_x is a *network* at x in X, i.e., $x \in \cap \mathcal{P}_x$ and for each neighborhood U of x in $X, P \subset U$ for some $P \in \mathcal{P}_x$;
- (b) If $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

- (i) \mathcal{P} is called an *sn-network* [7] of X if each element of \mathcal{P}_x is a sequential neighborhood of x for each $x \in X$, where \mathcal{P}_x is called an *sn*-network at x in X. In this paper, when we say an *sn* fcountable space Y, it is always assumed that Y has an *sn*-network $\mathcal{P} = \bigcup \{\mathcal{P}_y \mid y \in Y\}$ such that \mathcal{P}_y is countable and closed under finite intersections for each point $y \in Y$.
- (ii) \mathcal{P} is called a *weak base* [2] of X if whenever $G \subset X$, G is open in X if and only if for each $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$.

DEFINITION 1.5. [17] Let A be a subset of a space X. We call an open family \mathcal{N} of subsets of X is an *external base* of A in X if for any $x \in A$ and open subset U with $x \in U$ there is a $V \in \mathcal{N}$ such that $x \in V \subset U$.

Similarly, we can define an *externally weak base* for a subset A of a space X.

DEFINITION 1.6. Let $f: X \to Y$ be a map.

- (a) f is a boundary compact map [13] if $\partial f^{-1}(y)$ is compact in X for every $y \in Y$.
- (b) f is sequence covering [12] if for every convergent sequence S in Y, there is a convergent sequence L in X such that f(L) = S. Equivalently, if whenever $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_n\}$ in X with each $x_n \in f^{-1}(y_n)$ [20].
- (c) f is sequentially quotient [12] if for every convergent sequence Sin Y, there is a convergent sequence L in X such that f(L) is an infinite subsequence of S. Equivalently, if whenever $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_k\}$ in X with each $x_k \in f^{-1}(y_{n_k})$ [20].
- (d) f is 1-sequence covering [11] if for each $y \in Y$, there is $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y, there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$.

DEFINITION 1.7. [5, 19] If $K \subset \mathbb{N}$, then K_n will denote the set $\{k \in K, k \leq n\}$ and $|K_n|$ stands for the cardinality of K_n . The *natural density* of K is defined by $d(K) = \lim_{n \to \infty} \frac{|K_n|}{n}$, if limit exists. And K is called *statistically dense* [4] if d(K) = 1.

DEFINITION 1.8. A subsequence S of the sequence L is called *statistically dense* [4] in L if the set of all indices of elements from S is statistically dense.

V. Renukadevi and B. Prakash

2. Statistically Sequentially Quotient Maps

In this section, we introduce statistically sequentially quotient maps and give their properties. A map $f: X \to Y$ is said to be a *statistically* sequentially quotient map if for given $y_n \to y$ in Y, there exist $x_k \to x, x \in f^{-1}(y)$ and $x_k \in f^{-1}(y_{n_k})$ such that d(K) = 0 where $K = \{n \in \mathbb{N} \mid x_k \notin f^{-1}(y_n) \text{ for all } k \in \mathbb{N}\}$. That is, $\{f(x_n)\}$ is statistically dense in $\{y_n\}$, since $d(K) + d(N \setminus K) = 1$ [18].

PROPOSITION 2.1. Let $f : X \to Y$ be a map and $g = f|_{\sigma X} : \sigma X \to \sigma Y$. Then f is a statistically sequentially quotient if and only if g is statistically sequentially quotient.

PROPOSITION 2.2. Let $f: X \to Y$ and $g: Y \to Z$ be any two maps. Then the following hold.

(a) If f and g are statistically sequentially quotient, then $f \circ g$ is statistically sequentially quotient.

(b) If $f \circ g$ is statistically sequentially quotient, then g is statistically sequentially quotient.

PROPOSITION 2.3. The following hold:

(a) Finite product of statistically sequentially quotient map is statistically sequentially quotient.

(b) Statistically sequentially quotient maps are hereditarily statistically sequentially quotient maps.

Proof.

(a) Let $\prod_{i=1}^{\mathcal{N}} f_i : \prod_{i=1}^{\mathcal{N}} X_i \to \prod_{i=1}^{\mathcal{N}} Y_i$ be a map where each $f_i : X_i \to Y_i$ is statistically sequentially quotient map for $i = 1, 2, 3, ... \mathcal{N}$. Let $\{(y_{i,n})\}_{n \in \mathbb{N}}$ be a sequence converges to (y_i) in $\prod_{i=1}^{\mathcal{N}} Y_i$. Then each $\{y_{i,n}\}$ is a sequence converges to y_i in Y_i . Since each f_i is a statistically sequentially quotient map, there exists a sequence $\{x_{i,k}\}$ converges to x_i such that $f_i(x_{i,k}) = y_{i,n_k}$.

Take $(x_i) \in \prod_{i=1}^{\mathcal{N}} X_i$. Then $\{(x_{i,k})\}$ converges to (x_i) . And for each $i = 1, 2, 3, ... \mathcal{N}, \ \mathcal{N}_i = \{n_k \in \mathbb{N}/x_{i,k} \in f_i^{-1}(y_{i,n_k})\}$ is statistically dense in \mathbb{N} . By Remark 1.1 (3) in [23], $\mathcal{N}' = \cap \mathcal{N}_i$ is statistically dense in \mathbb{N} . That implies a sequence $\{(x_{i,k})\}_{n \in \mathbb{N}}$ is converges to (x_i) and $f((x_{i,k}))$ is statistically dense in $(y_{i,n})$. Therefore, $\prod_{i=1}^{\mathcal{N}} f_i$ is a statistically sequentially quotient map.

(b) Let $f: X \to Y$ be a statistically sequentially quotient map and H be a subspace of Y. Take $g = f|_{f^{-1}(H)}$ such that $g: f^{-1}(H) \to H$ be a map.

Given a sequence $\{y_n\}$ converging to y in H, there exists a sequence $x_k \in f^{-1}(y_{n_k}) \in f^{-1}(H)$ such that (x_k) converges to $x \in f^{-1}(y) \in f^{-1}(H)$, since f is statistically sequentially quotient map and $\{y_n\}$ converges to y in Y. Therefore, g is a statistically sequentially quotient map.

We observe the following implications.

sequence covering map \implies statistically sequentially quotient map \implies sequentially quotient map.

But none of the reverse implications need not be true as shown by the following examples.

EXAMPLE 2.4. Let $X = (\bigoplus_{\alpha \in I} S_{\alpha}) \bigoplus I$ where I is the closed unit interval with usual topology and $S_{\alpha} = \{x_{\alpha,n}/n \in \mathbb{N}\} \bigcup \{x_{\alpha}\}$ with the topology defined as follows:

- (i) Each point $x_{\alpha,n}$ is open
- (ii) Open set containing x_{α} is of the form $\{x_{\alpha,n}/n \geq n_0\} \bigcup \{x_{\alpha}\}$ for some $n_0 \in \mathbb{N}$,

and Y be the space obtained from X by identifying the limit point of S_{α} with α . Take Y as a quotient topology that is open sets of Y are as follows:

- (i) Each point $x_{\alpha,n}$ is open
- (*ii*) open set U containing α is of the form $\{x_{\alpha,n}/n \ge n_0\} \bigcup \{x_\alpha\} \bigcup U'$ where U' is open neighborhood of α in I and $n_0 \in \mathbb{N}$.

Let $f: X \to Y$ be the map defined by

$$f(x) = \begin{cases} x & if \ x = x_{\alpha,n} \in S_{\alpha} \\ \alpha & if \ x = x_{\alpha} \in S_{\alpha} \\ \alpha & if \ x = \alpha \in I \end{cases}$$

(a) f is sequentially quotient

Let S be a non-trivial convergent sequence in Y with its limit y. Clearly $y \in I$. Take $S \cap S_y = S'$ and $S \cap I = S''$. Either S' or S'' must be infinite, since S is a non-trivial convergent sequence. Then the infinite sequence S' or S'' is a convergent sequence in X

V. Renukadevi and B. Prakash

with its image is a subsequence of S. Therefore, f is sequentially quotient map.

(b) f is not statistically sequentially quotient

Let $\{\alpha_n\}$ be a sequence in I converging to $\alpha \in I$. Define the sequence $S = \{y_n\}$ in Y in the following way:

$$y_n = \begin{cases} x_{\alpha,n} & \text{if } n \text{ is even} \\ \alpha_n & \text{if } n \text{ is odd} \end{cases}$$

Then $\{y_n\}$ converges to $\alpha \in Y$. Consider $S \cap S_\alpha$ and $S \cap I$ in X. We have $d(\{n/y_n \in S \cap S_\alpha\}) = \frac{1}{2}$, $d(\{n/y_n \in S \cap I\}) = \frac{1}{2}$ and $S \cap S_\alpha$ converges to x_α , $S \cap I$ converges to α . Since X is Hausdorff, we conclude that there is no sequence S' in X such that f(S') is statistically dence subsequence of S. Therefore, f is not statistically sequentially quotient.

EXAMPLE 2.5. Let $\wedge = \{K/d(K) = 1, K \text{ is a subsequence of } \mathbb{N} \text{ obtained by deleting infinitely many elements} \text{ and } S_{\alpha} = \{x_{\alpha,n}/n \in \mathbb{N}\} \bigcup \{x_{\alpha}\} \text{ be a topological space as defined in Example 2.4, where } \alpha \in \wedge. \text{ Let } X = \bigoplus_{\alpha \in \wedge} S_{\alpha} \text{ and } Y = \{y_n/n \in \mathbb{N}\} \bigcup \{y\}. \text{ Then } Y \text{ be a topological space as defined in } S_{\alpha} \text{ and } f : X \to Y \text{ defined by } f(x_{\alpha,n}) = \alpha(n) \text{ and } f(x_{\alpha}) = y \text{ where } \alpha(n) \text{ is an } n^{th} \text{ element in the sequence } \alpha.$

(1) f is a statistically sequentially quotient

Let S be a non-trivial convergent sequences in Y with its limit y. If S is a statistically dense subsequence of Y, then there is an element $\alpha \in \wedge$ such that $f(S_{\alpha})$ is a statistically dense subsequence of S. If S is a non-statistically dense subsequence of Y, then there is an element $\alpha \in \wedge$ such that $f(S_{\alpha}) \cap S = S$ that is $S' = f^{-1}(f(S_{\alpha}) \cap S) \cap S_{\alpha}$ is a convergent sequence in X whose image is S. Therefore, f is a statistically sequentially quotient map.

(2) f is not a sequence covering map Since corresponding to the sequence $\{y_n\}$, there are no sequence in X whose image is $\{y_n\}$. Therefore, f is not a sequence covering map.

convergent sequence with its limit x_{α} . Then for each $\alpha \in \wedge$, $S_{\alpha} = \{x_{\alpha,i}, x_{\alpha} \mid i \in \alpha\}$. Let X be a disjoint union of S_{α} and Y be a convergent sequence $\{y_n\}$ with its limit y. Then $f: X \to Y$ defined by $f(x_{\alpha,i}) = y_i$ and $f(x_{\alpha}) = y$ is a statistically sequentially quotient map but not a sequence covering map,

3. Proof of Theorem 1

The proof of Theorem 1 will be divided into Theorems 3.1, 3.2, 3.4 and Lemma 3.3. Let Ω be the set of all topological spaces such that each compact subset $K \subset X$ is metrizable and has a countable neighborhood base in X. In fact, Michael and Nagami in [17] has proved that $X \in \Omega$ if and only if X is the image of some metric space under an open and compact-covering map. It is easy to see that if a space X is developable or has a point-countable base, then $X \in \Omega$. (see [1] and [21], respectively)

THEOREM 3.1. Let $f : X \to Y$ be a statistically sequentially quotient and boundary compact map, where Y is sn f-countable. For each non-isolated point $y \in Y$, there exists a point $x_y \in \partial f^{-1}(y)$ such that whenever U is an open subset with $x_y \in U$, there exists a $P \in \mathcal{P}_y$ satisfying $P \subset f(U)$.

Proof. Suppose not, that is there exists a non-isolated point $y \in Y$ such that for every point $x \in \partial f^{-1}(y)$, there is an open neighborhood U_x of x such that $P \nsubseteq f(U_x)$ for every $P \in \mathcal{P}_y$. Then $\partial f^{-1}(y) \subset \bigcup \{U_x \mid y \in \mathcal{P}_y\}$ $x \in \partial f^{-1}(y)$. Since $\partial f^{-1}(y)$ is compact, there exists a finite subfamily $\mathcal{U} \subset \{U_x \mid x \in \partial f^{-1}(y)\}$ such that $\partial f^{-1}(y) \subset \cup \mathcal{U}$. We denote \mathcal{U} by $\{U_i \mid 1 \leq i \leq n_0\}$. Assume that $\mathcal{P}_y = \{P_n \mid n \in \mathbb{N}\}$ and $\mathcal{W}_y = \{F_n = i\}$ $\bigcap_{i=1}^{n} P_i \mid n \in \mathbb{N}$. It is obvious that $\mathcal{W}_y \subset \mathcal{P}_y$ and $F_{n+1} \subset F_n$ for every $n \in \mathbb{N}$. For each $1 \leq m \leq n_0, n \in \mathbb{N}$, it follows that there exists $x_{n,m} \in F_n \setminus f(U_m)$. Denote $y_k = x_{n,m}$ where $k = (n-1)n_0 + m$. Since \mathcal{P}_y is a network at a point y and $F_{n+1} \subset F_n$ for every $n \in \mathbb{N}, \{y_n\}$ is a sequence converging to y in Y. Since f is a statistically sequentially quotient map, $\{y_{n_k}\}$ is an image of some sequence $\{x_k\}$ converging to $x \in \partial f^{-1}(y)$ in X. From $x \in \partial f^{-1}(y) \subset \cup \mathcal{U}$ it follows that there exists $1 \leq m_0 \leq n_0$ such that $x \in U_{m_0}$. Therefore, $\{x\} \cup \{x_k \mid k \geq k_o\} \subseteq U_{m_0}$ for some $k_0 \in \mathbb{N}$. Hence $\{y\} \cup \{y_{n_k} \mid n_k \geq k_0\} \subset f(U_{m_0})$. However, we can choose an $n > k_0$ such that $n_k = (n-1)n_0 + m_0 \ge k_0$, $y_{n_k} =$ x_{n,m_0} which implies that $x_{n,m_0} \in f(U_{m_0})$. Suppose there is no $n > k_0$ such that $n_k = (n-1)n_0 + m_0 \ge k_0, y_{n_k} \in f(U_{m_0})$. That is, for all $n > k_0, n_k = (n-1)n_0 + m_0 \ge k_0$ such that $y_{n_k} \notin f(U_{m_0})$. This implies $\{n_k \in \mathbb{N} \mid n \geq n_k, n_k = (n'-1)n_0 + m_0, n' > k_0\} \subset K_n$ where $k_0 = qn_0 + r$, $n = q_1n_0 + r_1$ and $K = \{n/y_n \notin f(U_{m_0})\}$. Now $|K_n| > q_1 - q$ implies $d(K) = \lim_{n \to \infty} \frac{|K_n|}{n} > \lim_{q_1 \to \infty} \frac{q_1 - q}{q_1 n_0 + r_1} = \frac{1}{n_0}$ which is a contradiction to d(K) = 0. Therefore, there exists $n > k_0$ such that $n_k = (n-1)n_0 + m_0 \ge k_0, y_{n_k} = x_{n,m_0}$ and $x_{n,m_0} \in f(U_{m_0})$ which contradicts $x_{n,m_0} \in F_n \setminus f(U_{m_0})$.

THEOREM 3.2. Let $f : X \to Y$ be a statistically sequentially quotient and boundary-compact map, where X is first countable. Then Y is snfcountable if and only if f is an 1-sequence-covering map.

Proof. Necessity. Let y be a non-isolated point in Y. Since Y is snfcountable, by Theorem 3.1, there exists a point $x_y \in \partial f^{-1}(y)$ such that whenever U is an open neighborhood of x_y , there is a $P \in \mathcal{P}_y$ satisfying $P \subset f(U)$. Let $\{B_n \mid n \in \mathbb{N}\}$ be a countable neighborhood base at x_y such that $B_{n+1} \subset B_n$ for each $n \in \mathbb{N}$. Now for each B_n , there exists a $P_n \in \mathcal{P}_y$ such that $P_n \subset f(B_n)$ for each $n \in \mathbb{N}$ which implies that every $f(B_n)$ is a sequential neighborhood of y in Y, since every $P \in \mathcal{P}_y$ is a sequential neighborhood of y.

Suppose that $\{y_n\}$ is a sequence in Y which converges to y. Then for each $n \in \mathbb{N}$, there is an $i_n \in \mathbb{N}$ such that $y_i \in f(B_n)$ for every $i \geq i_n$. Let it $1 < i_n < i_{n+1}$ for every $n \in \mathbb{N}$. Take

$$x_j \in \begin{cases} f^{-1}(y_j), & \text{if } j < i_1 \\ f^{-1}(y_j) \cap B_n, & \text{if } i_n \le j < i_{n+1} \end{cases}$$

Denote $S = \{x_j \mid j \in \mathbb{N}\}$. It is easy to see that S converges to x_y in X and $f(S) = \{y_n\}$. Therefore, f is an 1-sequence-covering map. Converse part is easy to see.

LEMMA 3.3. Let $f : X \to Y$ be a sequentially quotient and boundarycompact map. If $X \in \Omega$, then Y is snf-countable

Proof. Let y be a non-isolated point for Y. Since $X \in \Omega$ and $\partial f^{-1}(y)$ is non-empty and compact for X, there exist a countable external base \mathcal{U} for $\partial f^{-1}(y)$ in X. Let it be $\mathcal{V} = \{ \cup \mathcal{F} \mid \text{there is a finite subfamily} \mathcal{F} \subset \mathcal{U}$ with $\partial f^{-1}(y) \subset \cup \mathcal{F} \}$. Obviously, \mathcal{V} is countable. We now prove that $f(\mathcal{V})$ is a countable sn-network at point y.

(1) $f(\mathcal{V})$ is a network at y.

Let $y \in U$. Obviously, $\partial f^{-1}(y) \subset f^{-1}(U)$. For each $x \in \partial f^{-1}(y)$, there exists an $U_x \in \mathcal{U}$ such that $x \in U_x \subset f^{-1}(U)$. Therefore, $\partial f^{-1}(y) \subset \bigcup \{U_x \mid x \in \partial f^{-1}(y)\}$. Since $\partial f^{-1}(y)$ is compact, it follows that there exists a finite subfamily $\mathcal{F} \subset \{U_x \mid x \in \partial f^{-1}(y)\}$ such that $\partial f^{-1}(y) \subset \bigcup \mathcal{F} \subset f^{-1}(U)$. It is easy to see that $\bigcup \mathcal{F} \in \mathcal{V}$ and $y \in f(\cup \mathcal{F}) \subset U$.

(2) For any $P_1, P_2 \in f(\mathcal{V})$, there exists a $P_3 \in f(\mathcal{V})$ such that $P_3 \subset P_1 \cap P_2$.

It is obvious that there exist V_1, V_2 in \mathcal{V} such that $f(V_1) = P_1, f(V_2) = P_2$, respectively. Since $\partial f^{-1}(y) \subset V_1 \cap V_2$, it follows from the similar proof of (1) that there exist a $V_3 \in \mathcal{V}$ such that $\partial f^{-1}(y) \subset V_3 \subset V_1 \cap V_2$. Let $P_3 = f(V_3)$. Thus, $P_3 \subset f(V_1 \cap V_2) \subset f(V_1) \cap f(V_2) = P_1 \cap P_2$.

(3) For each $P \in f(\mathcal{V})$, P is a sequential neighborhood of y.

Let $\{y_n\}$ be any sequence in Y converges to y in Y. Since f is a sequentially quotient map, there exist a sequence $\{x_k\}$ converging to $x \in \partial f^{-1}(y) \subset X$ where $x_k \in f^{-1}(y_{n_k})$. Since $P \in f(\mathcal{V})$, there exists a $V \in \mathcal{V}$ such that P = f(V). Therefore, $\{x_n\}$ is eventually in V, and this implies that $\{y_n\}$ is eventually in P. Suppose not, there exists a subsequence $\{y'_n\}$ such that $y'_n \notin P$ and it converges to y. Then there exists a sequence $\{x'_n\}$ converges to $x' \in \partial f^{-1}(y)$ and it's image is a subsequence of $\{y'_n\}$. Since $x' \in \partial f^{-1}(y) \subset V$, y'_n is frequently in P, which is a contradiction. Therefore, $f(\mathcal{V})$ is a countable sn-network at a point y.

THEOREM 3.4. Let $f : X \to Y$ be a statistically sequentially quotient and boundary-compact map. If $X \in \Omega$, then f is an 1-sequence-covering map.

Proof. From Lemma 3.3, it follows that Y is snf-countable. Therefore, f is an 1-sequence covering map, since $\partial f^{-1}(y)$ is compact subset of $X \in \Omega$, by Theorem 3.2.

References

- B. Alleche, A. Arhangel'skii and J. Calbrix, Weak developments and metrization, Topology Appl. (2000), 23–38.
- [2] A. Arhangel'skii, *Mappings and spaces*, Russian Math. Surveys **21** (1966), 115– 162.
- [3] J. R. Boone and F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26 (1976), 174–182.
- [4] G. Di Maio and Lj. D. R. Kočinac, Statistical convergence in topology, Topology Appl. 156 (2008), 28–45.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244.
- [6] S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107– 115.
- [7] Y. Ge, On sn-metrizable spaces, Acta Math. Sinica 45 (2002), 355-360(in chinese).
- [8] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332.

V. Renukadevi and B. Prakash

- [9] Z. Li, Images of locally compact metric spaces, Acta Math. Hungar. 99 (2003), 81–88.
- [10] J. Li, andS. Jiang, On sequence-covering K-mappings, Indian J. Pure Appl. Math. 34 (2003), 397–403.
- [11] S. Lin, On sequence-covering s-maps, Adv. Math. (in Chinese) 25 (1996), 548– 551.
- [12] S. Lin, *Point-countable covers and sequence-covering Mappings* (in Chinese): Science Press, Beijing, 2002
- [13] F. Lin and S. Lin, On Sequence-covering boundary compact maps of metric spaces, Adv. Math(China) 39(1) (2010), 71–78.
- F. Lin and S. Lin, Sequence-covering maps on generalized metric spaces, Houston J. Math. 40(3) (2014), 927–943.
- [15] S. Lin and P. Yan, Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
- [16] C. Liu and S. Lin, On countable-to-one maps, Topology Appl. 154 (2007), 449– 454.
- [17] E. A. Michael and K. Nagami, Compact-covering images of metric spaces, Proc. Amer. Math. Soc. 37 (1973), 260–266.
- [18] I. M. Niven, H. S. Zuckerman and H.L. Montgomery, An introduction to the theory of numbers, John wiley and sons. inc., 1991
- [19] I. J. Schoenberg, The Integrability of certain function and related summability methods, Amer. Math. Monthly 66 (1959), 361–375.
- [20] F. Siwiec, Sequence-covering and countably bi-quotient maps, General Topology Appl. 1 (1971), 143–154.
- [21] V. V. Tkachuk, Monolithic spaces and D-spaces revisited, Topology Appl. 156 (2009), 840–846.
- [22] P. Yan, S. Lin and S. Jiang, Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47(1) (2004), 87–90.
- [23] Z. Tang and F. Lin, Statistical versions of sequential and Fréchet Urysohn spaces, Adv. Math. (china) 44 (2015), 945–954.

V. Renukadevi

Center for Research and Post Graduate Department of Mathematics Ayya Nadar Janaki Ammal College(Autonomous) Sivakasi 626 124, Tamil Nadu, India *E-mail*: renu_siva2003@yahoo.com

B. Prakash

Center for Research and Post Graduate Department of Mathematics Ayya Nadar Janaki Ammal College(Autonomous) Sivakasi 626 124, Tamil Nadu, India *E-mail*: prakashphd101@gmail.com