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ON STATISTICALLY SEQUENTIALLY QUOTIENT

MAPS

V. Renukadevi∗ and B. Prakash†

Abstract. In this paper, we introduce the concept of statistically
sequentially quotient map which is a generalization of sequence cov-
ering map and discuss the relation with covering maps by some ex-
amples. Using this concept, we give an affirmative answer for a
question by Fucai Lin and Shou Lin.

1. Introduction

Finding the internal characterizations of certain images of metric
spaces is one of the central questions in general topology [8–10,12,16,22].
In 1971, Siwiec [20] introduced the concept of sequence covering maps
which is closely related to the question about compact-covering and s-
images of metric spaces. Lin and Yan in [15] proved that each sequence-
covering and compact map on metric spaces is an 1-sequence covering
map. Later Lin Fucai and Lin Shou in [13] proved that each sequence-
covering and boundary-compact map on metric spaces is an 1-sequence
covering map and posed Question 1 below. In [14], they answered this

Received November 3, 2016. Revised February 9, 2017. Accepted February 28,
2017.

2010 Mathematics Subject Classification: 54C10, 54D30, 54D55, 97I30, 54E40,
54A20.

Key words and phrases: sequence covering, 1-sequence covering, sequentially quo-
tient, sn-network, boundary compact map.
† The research is supported by the Council of Scientific & Industrial Research

Fellowship in Sciences (CSIR, New Delhi) for Meritorious Students, India.
∗ Corresponding author.
c© The Kangwon-Kyungki Mathematical Society, 2017.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



62 V. Renukadevi and B. Prakash

question. In this paper, we consider a similar question for statistically
sequentially quotient and boundary-compact maps and prove the main
result Theorem 1.

Question 1.1. [13] Let f : X → Y be a sequence-covering and
boundary-compact map. Is f an 1-sequence-covering map, if X is a
space with a point-countable base or a developable space?

Theorem 1. Let f : X → Y be a statistically sequentially quotient
and boundary-compact map. Suppose also that at least one of the follow-
ing conditions holds:

(1) X has a point-countable base;
(2) X is a developable space.

Then f is an 1-sequence-covering map.

Throughout this paper, all spaces are T2, all maps are continuous and
onto, and N is the set of positive integers. xn → x denote a sequence
{xn} converging to x. Let X be a space and P ⊂ X. A sequence {xn}
converging to x in X is eventually in P if {xn | n > k} ∪ {x} ⊂ P for
some k ∈ N; it is frequently in P if {xnk

} is eventually in P for some
subsequence {xnk

} of {xn}. Let P be a family of subsets of X. Then ∪P
and ∩P denote the union ∪{P | P ∈ P} and the intersection ∩{P |
P ∈ P}, respectively.

Definition 1.2. Let X be a space and P ⊂ X.

(a) Let x ∈ P. P is called a sequential neighborhood [6] of x in X if
whenever {xn} is a sequence converging to the point x, then {xn}
is eventually in P.

(b) P is called a sequentially open [6] subset in X if P is a sequential
neighborhood of x in X for each x ∈ P.

Definition 1.3. Let (X, τ) be a topological space. We define a se-
quential closure-topology στ [6] on X as follows: O ∈ στ if and only if O
is a sequentially open subset in (X, τ). The topological space (X, στ ) is
denoted by σX.

Definition 1.4. Let P = ∪{Px | x ∈ X} be a cover of a space X such
that for each x ∈ X, the following conditions (a) and (b) are satisfied:

(a) Px is a network at x in X, i.e., x ∈ ∩Px and for each neighborhood
U of x in X,P ⊂ U for some P ∈ Px;

(b) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
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(i) P is called an sn-network [7] of X if each element of Px is a se-
quential neighborhood of x for each x ∈ X, where Px is called
an sn-network at x in X. In this paper, when we say an sn f -
countable space Y, it is always assumed that Y has an sn-network
P =

⋃
{Py | y ∈ Y } such that Py is countable and closed under

finite intersections for each point y ∈ Y.
(ii) P is called a weak base [2] of X if whenever G ⊂ X, G is open

in X if and only if for each x ∈ G, there exists P ∈ Px such that
P ⊂ G.

Definition 1.5. [17] Let A be a subset of a space X. We call an open
family N of subsets of X is an external base of A in X if for any x ∈ A
and open subset U with x ∈ U there is a V ∈ N such that x ∈ V ⊂ U.

Similarly, we can define an externally weak base for a subset A of a
space X.

Definition 1.6. Let f : X → Y be a map.

(a) f is a boundary compact map [13] if ∂f−1(y) is compact in X for
every y ∈ Y.

(b) f is sequence covering [12] if for every convergent sequence S in
Y, there is a convergent sequence L in X such that f(L) = S.
Equivalently, if whenever {yn} is a convergent sequence in Y, there
is a convergent sequence {xn} in X with each xn ∈ f−1(yn) [20].

(c) f is sequentially quotient [12] if for every convergent sequence S
in Y, there is a convergent sequence L in X such that f(L) is
an infinite subsequence of S. Equivalently, if whenever {yn} is a
convergent sequence in Y, there is a convergent sequence {xk} in
X with each xk ∈ f−1(ynk

) [20].
(d) f is 1-sequence covering [11] if for each y ∈ Y, there is x ∈ f−1(y)

such that whenever {yn} is a sequence converging to y in Y, there
is a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

Definition 1.7. [5, 19] If K ⊂ N, then Kn will denote the set {k ∈
K, k ≤ n} and |Kn| stands for the cardinality of Kn. The natural density

of K is defined by d(K) = lim
n→∞

|Kn|
n
, if limit exists. And K is called

statistically dense [4] if d(K) = 1.

Definition 1.8. A subsequence S of the sequence L is called sta-
tistically dense [4] in L if the set of all indices of elements from S is
statistically dense.
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2. Statistically Sequentially Quotient Maps

In this section, we introduce statistically sequentially quotient maps
and give their properties. A map f : X → Y is said to be a statistically
sequentially quotient map if for given yn → y in Y, there exist xk →
x, x ∈ f−1(y) and xk ∈ f−1(ynk

) such that d(K) = 0 where K = {n ∈
N | xk /∈ f−1(yn) for all k ∈ N}. That is, {f(xn)} is statistically dense
in {yn}, since d(K) + d(N \K) = 1 [18].

Proposition 2.1. Let f : X → Y be a map and g = f |σX : σX →
σY. Then f is a statistically sequentially quotient if and only if g is
statistically sequentially quotient.

Proposition 2.2. Let f : X → Y and g : Y → Z be any two maps.
Then the following hold.
(a) If f and g are statistically sequentially quotient, then f ◦ g is statis-
tically sequentially quotient.
(b) If f ◦ g is statistically sequentially quotient, then g is statistically
sequentially quotient.

Proposition 2.3. The following hold:
(a) Finite product of statistically sequentially quotient map is statisti-
cally sequentially quotient.
(b) Statistically sequentially quotient maps are hereditarily statistically
sequentially quotient maps.

Proof.

(a) Let
∏N

i=1 fi :
∏N

i=1Xi →
∏N

i=1 Yi be a map where each fi : Xi →
Yi is statistically sequentially quotient map for i = 1, 2, 3, ...N .
Let {(yi,n)}n∈N be a sequence converges to (yi) in

∏N
i=1 Yi. Then

each {yi,n} is a sequence converges to yi in Yi. Since each fi is
a statistically sequentially quotient map, there exists a sequence
{xi,k} converges to xi such that fi(xi,k) = yi,nk

.

Take (xi) ∈
∏N

i=1Xi. Then {(xi,k)} converges to (xi). And for each
i = 1, 2, 3, ...N , Ni = {nk ∈ N/xi,k ∈ f−1i (yi,nk

)} is statistically
dense in N. By Remark 1.1 (3) in [23], N ′ = ∩Ni is statistically
dense in N. That implies a sequence {(xi,k)}n∈N is converges to (xi)

and f((xi,k)) is statistically dense in (yi,n). Therefore,
∏N

i=1 fi is a
statistically sequentially quotient map.
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(b) Let f : X → Y be a statistically sequentially quotient map and H
be a subspace of Y . Take g = f |f−1(H) such that g : f−1(H)→ H
be a map.
Given a sequence {yn} converging to y in H, there exists a sequence
xk ∈ f−1(ynk

) ∈ f−1(H) such that (xk) converges to x ∈ f−1(y) ∈
f−1(H), since f is statistically sequentially quotient map and {yn}
converges to y in Y. Therefore, g is a statistically sequentially quo-
tient map.

We observe the following implications.
sequence covering map =⇒ statistically sequentially quotient map =⇒

sequentially quotient map.
But none of the reverse implications need not be true as shown by

the following examples.

Example 2.4. Let X = (
⊕
α∈I

Sα)
⊕

I where I is the closed unit in-

terval with usual topology and Sα = {xα,n/n ∈ N}
⋃
{xα} with the

topology defined as follows:

(i) Each point xα,n is open
(ii) Open set containing xα is of the form {xα,n/n ≥ n0}

⋃
{xα} for

some n0 ∈ N,
and Y be the space obtained from X by identifying the limit point of
Sα with α. Take Y as a quotient topology that is open sets of Y are as
follows:

(i) Each point xα,n is open
(ii) open set U containing α is of the form {xα,n/n ≥ n0}

⋃
{xα}

⋃
U ′

where U ′ is open neighborhood of α in I and n0 ∈ N.
Let f : X → Y be the map defined by

f(x) =


x if x = xα,n ∈ Sα
α if x = xα ∈ Sα

α if x = α ∈ I

(a) f is sequentially quotient
Let S be a non-trivial convergent sequence in Y with its limit y.
Clearly y ∈ I. Take S ∩ Sy = S ′ and S ∩ I = S ′′. Either S ′ or
S ′′ must be infinite, since S is a non-trivial convergent sequence.
Then the infinite sequence S ′ or S ′′ is a convergent sequence in X
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with its image is a subsequence of S. Therefore, f is sequentially
quotient map.

(b) f is not statistically sequentially quotient
Let {αn} be a sequence in I converging to α ∈ I. Define the se-
quence S = {yn} in Y in the following way:

yn =

{
xα,n if n is even

αn if n is odd
.

Then {yn} converges to α ∈ Y. Consider S ∩ Sα and S ∩ I in
X. We have d({n/yn ∈ S ∩ Sα}) = 1

2
, d({n/yn ∈ S ∩ I) = 1

2
and S ∩ Sα converges to xα, S ∩ I converges to α. Since X is
Hausdorff, we conclude that there is no sequence S ′ in X such that
f(S ′) is statistically dence subsequence of S. Therefore, f is not
statistically sequentially quotient.

Example 2.5. Let ∧ = {K/d(K) = 1, K is a subsequence of N
obtained by deleting infinitely many elements} and Sα = {xα,n/n ∈
N}
⋃
{xα} be a topological space as defined in Example 2.4, where α ∈ ∧.

Let X =
⊕
α∈∧

Sα and Y = {yn/n ∈ N}
⋃
{y}. Then Y be a topological

space as defined in Sα and f : X → Y defined by f(xα,n) = α(n) and
f(xα) = y where α(n) is an nth element in the sequence α.

(1) f is a statistically sequentially quotient
Let S be a non-trivial convergent sequences in Y with its limit y. If
S is a statistically dense subsequence of Y, then there is an element
α ∈ ∧ such that f(Sα) is a statistically dense subsequence of S.
If S is a non-statistically dense subsequence of Y, then there is an
element α ∈ ∧ such that f(Sα) ∩ S = S that is S ′ = f−1(f(Sα) ∩
S)∩Sα is a convergent sequence in X whose image is S. Therefore,
f is a statistically sequentially quotient map.

(2) f is not a sequence covering map
Since corresponding to the sequence {yn}, there are no sequence
in X whose image is {yn}. Therefore, f is not a sequence covering
map.

convergent sequence with its limit xα. Then for each α ∈ ∧, Sα =
{xα,i, xα | i ∈ α}. Let X be a disjoint union of Sα and Y be a convergent
sequence {yn} with its limit y. Then f : X → Y defined by f(xα,i) = yi
and f(xα) = y is a statistically sequentially quotient map but not a
sequence covering map,
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3. Proof of Theorem 1

The proof of Theorem 1 will be divided into Theorems 3.1, 3.2, 3.4
and Lemma 3.3. Let Ω be the set of all topological spaces such that
each compact subset K ⊂ X is metrizable and has a countable neigh-
borhood base in X. In fact, Michael and Nagami in [17] has proved that
X ∈ Ω if and only if X is the image of some metric space under an
open and compact-covering map. It is easy to see that if a space X is
developable or has a point-countable base, then X ∈ Ω. (see [1] and [21],
respectively)

Theorem 3.1. Let f : X → Y be a statistically sequentially quo-
tient and boundary compact map, where Y is sn f-countable. For each
non-isolated point y ∈ Y, there exists a point xy ∈ ∂f−1(y) such that
whenever U is an open subset with xy ∈ U, there exists a P ∈ Py satis-
fying P ⊂ f(U).

Proof. Suppose not, that is there exists a non-isolated point y ∈ Y
such that for every point x ∈ ∂f−1(y), there is an open neighborhood
Ux of x such that P * f(Ux) for every P ∈ Py. Then ∂f−1(y) ⊂ ∪{Ux |
x ∈ ∂f−1(y)}. Since ∂f−1(y) is compact, there exists a finite subfamily
U ⊂ {Ux | x ∈ ∂f−1(y)} such that ∂f−1(y) ⊂ ∪U . We denote U by
{Ui | 1 ≤ i ≤ n0}. Assume that Py = {Pn | n ∈ N} and Wy = {Fn =⋂n
i=1 Pi | n ∈ N}. It is obvious that Wy ⊂ Py and Fn+1 ⊂ Fn for

every n ∈ N. For each 1 ≤ m ≤ n0, n ∈ N, it follows that there exists
xn,m ∈ Fn \ f(Um). Denote yk = xn,m where k = (n − 1)n0 + m. Since
Py is a network at a point y and Fn+1 ⊂ Fn for every n ∈ N, {yn} is
a sequence converging to y in Y. Since f is a statistically sequentially
quotient map, {ynk

} is an image of some sequence {xk} converging to
x ∈ ∂f−1(y) in X. From x ∈ ∂f−1(y) ⊂ ∪U it follows that there exists
1 ≤ m0 ≤ n0 such that x ∈ Um0 . Therefore, {x} ∪ {xk | k ≥ ko} ⊆ Um0

for some k0 ∈ N. Hence {y} ∪ {ynk
| nk ≥ k0} ⊂ f(Um0). However,

we can choose an n > k0 such that nk = (n − 1)n0 + m0 ≥ k0, ynk
=

xn,m0 which implies that xn,m0 ∈ f(Um0). Suppose there is no n > k0
such that nk = (n − 1)n0 + m0 ≥ k0, ynk

∈ f(Um0). That is, for all
n > k0, nk = (n − 1)n0 + m0 ≥ k0 such that ynk

/∈ f(Um0). This
implies {nk ∈ N | n ≥ nk, nk = (n′ − 1)n0 + m0, n

′ > k0} ⊂ Kn

where k0 = qn0 + r, n = q1n0 + r1 and K = {n/yn /∈ f(Um0)}. Now

|Kn| > q1 − q implies d(K) = lim
n→∞

|Kn|
n

> lim
q1→∞

q1−q
q1n0+r1

= 1
n0

which is
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a contradiction to d(K) = 0. Therefore, there exists n > k0 such that
nk = (n − 1)n0 + m0 ≥ k0, ynk

= xn,m0 and xn,m0 ∈ f(Um0) which
contradicts xn,m0 ∈ Fn \ f(Um0).

Theorem 3.2. Let f : X → Y be a statistically sequentially quotient
and boundary-compact map, where X is first countable. Then Y is snf -
countable if and only if f is an 1-sequence-covering map.

Proof. Necessity. Let y be a non-isolated point in Y. Since Y is snf -
countable, by Theorem 3.1, there exists a point xy ∈ ∂f−1(y) such that
whenever U is an open neighborhood of xy, there is a P ∈ Py satisfying
P ⊂ f(U). Let {Bn | n ∈ N} be a countable neighborhood base at xy
such that Bn+1 ⊂ Bn for each n ∈ N. Now for each Bn, there exists a
Pn ∈ Py such that Pn ⊂ f(Bn) for each n ∈ N which implies that every
f(Bn) is a sequential neighborhood of y in Y, since every P ∈ Py is a
sequential neighborhood of y.

Suppose that {yn} is a sequence in Y which converges to y.
Then for each n ∈ N, there is an in ∈ N such that yi ∈ f(Bn) for every
i ≥ in. Let it 1 < in < in+1 for every n ∈ N. Take

xj ∈
{
f−1(yj), if j < i1
f−1(yj) ∩Bn, if in ≤ j < in+1

Denote S = {xj | j ∈ N}. It is easy to see that S converges to xy in X
and f(S) = {yn}. Therefore, f is an 1-sequence-covering map. Converse
part is easy to see.

Lemma 3.3. Let f : X → Y be a sequentially quotient and boundary-
compact map. If X ∈ Ω, then Y is snf -countable

Proof. Let y be a non-isolated point for Y. Since X ∈ Ω and ∂f−1(y)
is non-empty and compact for X, there exist a countable external base
U for ∂f−1(y) in X. Let it be V = {∪F | there is a finite subfamily
F ⊂ U with ∂f−1(y) ⊂ ∪F}. Obviously, V is countable. We now prove
that f(V) is a countable sn-network at point y.

(1) f(V) is a network at y.
Let y ∈ U. Obviously, ∂f−1(y) ⊂ f−1(U). For each x ∈

∂f−1(y), there exists an Ux ∈ U such that x ∈ Ux ⊂ f−1(U). Therefore,
∂f−1(y) ⊂ ∪{Ux | x ∈ ∂f−1(y)}. Since ∂f−1(y) is compact, it follows
that there exists a finite subfamily F ⊂ {Ux | x ∈ ∂f−1(y)} such that
∂f−1(y) ⊂ ∪F ⊂ f−1(U). It is easy to see that ∪F ∈ V and y ∈
f(∪F) ⊂ U.
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(2) For any P1, P2 ∈ f(V), there exists a P3 ∈ f(V) such
that P3 ⊂ P1 ∩ P2.

It is obvious that there exist V1, V2 in V such that f(V1) =
P1, f(V2) = P2, respectively. Since ∂f−1(y) ⊂ V1∩V2, it follows from the
similar proof of (1) that there exist a V3 ∈ V such that ∂f−1(y) ⊂ V3 ⊂
V1∩V2. Let P3 = f(V3). Thus, P3 ⊂ f(V1∩V2) ⊂ f(V1)∩f(V2) = P1∩P2.

(3) For each P ∈ f(V), P is a sequential neighborhood of y.
Let {yn} be any sequence in Y converges to y in Y. Since f

is a sequentially quotient map, there exist a sequence {xk} converging
to x ∈ ∂f−1(y) ⊂ X where xk ∈ f−1(ynk

). Since P ∈ f(V), there exists
a V ∈ V such that P = f(V ). Therefore, {xn} is eventually in V, and
this implies that {yn} is eventually in P. Suppose not, there exists a
subsequence {y′n} such that y′n /∈ P and it converges to y. Then there
exists a sequence {x′n} converges to x′ ∈ ∂f−1(y) and it’s image is a
subsequence of {y′n}. Since x′ ∈ ∂f−1(y) ⊂ V, y′n is frequently in P,
which is a contradiction. Therefore, f(V) is a countable sn−network at
a point y.

Theorem 3.4. Let f : X → Y be a statistically sequentially quotient
and boundary-compact map. If X ∈ Ω, then f is an 1-sequence-covering
map.

Proof. From Lemma 3.3, it follows that Y is snf -countable. There-
fore, f is an 1-sequence covering map, since ∂f−1(y) is compact subset
of X ∈ Ω, by Theorem 3.2.
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