
Korean J. Math. 25 (2017), No. 1, pp. 87–97
http://dx.doi.org/10.11568/kjm.2017.25.1.87

QUANTUM MODULARITY OF MOCK THETA

FUNCTIONS OF ORDER 2

Soon-Yi Kang

Abstract. In [9], we computed shadows of the second order mock
theta functions and showed that they are essentially same with the
shadow of a mock theta function related to the Mathieu moonshine
phenomenon. In this paper, we further survey the second order mock
theta functions on their quantum modularity and their behavior in
the lower half plane.

1. Introduction

In his last letter to Hardy, Ramanujan introduced the notion of a
mock theta function and offered 17 q-hypergemetric series as examples.
More examples of mock theta functions were found in Ramanujan’s lost
notebook. They attracted many mathematicians’ interests but remained
mystery until Zwegers [18] showed that a mock theta function is the
holomorphic part of a harmonic weak Maass form. This discovery led to
many applications of mock theta functions in number theory and beyond,
even in quantum physics. More precisely, a mock theta function f can
be completed to essentially a harmonic weak Mass form of weight 1/2 by
adding a period integral of a certain weight 3/2 unary theta series, say
g. This period integral is defined in the lower half plane and related to a
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partial theta function or a linear combination of partial theta functions.
In addition, the weight 3/2 unary theta series g is a holomorphic modular
form and is called the shadow of the mock theta function f . A mock
theta function and its associated partial theta function often coincide at
a rational point and this phenomenon resulted in a notion of a quatum
modular form by Zagier [17].

In [9], the author with Swisher gave direct computation of the shad-
ows of mock theta functions of order 2. In this paper, we further survey
the second order mock theta functions on their quantum modularity
and their behavior in the lower half plane from the q-hypergeometric
perspective. In Section 2, we first introduce the three well known mock
theta functions of order 2 and give a brief presentation of partial theta
functions and quantum modular forms associated to mock theta func-
tions. In Section 3, we introduce universal mock theta functions which
are direct two variable generalizations of the three 2nd order mock theta
functions and Zwegers’ universal mock theta function µ. In Section 4,
we find an explicit form of partial theta function defined in the lower half
plane corresponding to each of the three 2nd order mock theta functions.
We end the section with a brief discussion on the quantum modularity
of the three second order mock theta functions.

2. Mock Theta Functions of Order 2

Throughout, we use the notation H+ := {τ ∈ C | Im(τ) > 0} to
denote the complex upper-half plane, q := e2πiτ , and (a)0 := (a; q)0 = 1,
(a)n := (a; q)n :=

∏n−1
k=0(1 − aqk), (a)∞ := (a; q)∞ :=

∏∞
k=0(1 − aqk),

to denote the finite and infinite q-Pochhammer symbols. In the infinite
case, we assume |q| < 1.
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In [9], we discussed the computation of shadows of the three well-
known second order mock theta functions:

A(q) :=
∞∑
n=0

q(n+1)2(−q; q2)n
(q; q2)2

n+1

,

B(q) :=
∞∑
n=0

qn(n+1)(−q2; q2)n
(q; q2)2

n+1

,

K(q) :=
∞∑
n=0

(−1)nqn
2
(q; q2)n

(−q2; q2)2
n

.

(2.1)

The functions in (2.1) appear in [1,6,11,15]. See [9] for detailed history
of these functions. The last function K(q) is usually denoted by µ(q) as
in [9], but we use different notation not to be confused with Zwegers’s µ
function that will be introduced later.

In [9], we computed the shadows of the second order mock theta
functions in (2.1) and showed that each function, up to multiplication
by a rational power of q, has shadow related to η3(τ), where η(τ) is the
Dedekind eta-function defined on H+ by

(2.2) q−1/24η(τ) =
∞∏
n=1

(1− qn).

For example, by [9, (4.2)] and [18, Theorem 1.16 (1)],

(2.3) K(q)− iq1/8

∫ i∞

−τ̄

η3(z)√
−i(z + τ)

dz

is a harmonic weak Maass form of weight 1/2. By [9, (4.5)] and [18,
Theorem 1.16 (1)] again,

(2.4) B(q) + iq−1/2

∫ i∞

−τ̄

η3(4z)√
−i(z + τ)

dz

is also a harmonic weak Maass form of weight 1/2.
It follows from (2.3) and (2.4) that K(q4)+2qB(q) is a harmonic weak

Maass form which is holomorphic, and thus it is a weakly holomorphic
modular form of weight 1/2. In fact, Gordon and McIntosh established
three mock theta conjectures of order 2 [6, eq. (5.2)] and one of them
can be written as

(2.5) K(q4) + 2qB(q) =
(q2; q2)∞(q4; q4)3

∞(q8; q8)∞
(q)2
∞(q16; q16)2

∞
.
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As we expected, the right hand side is an eta quotient which is essentially
a weakly holomorphic modular form of weight 1/2. Speaking of the other
two mock theta conjectures of the 2nd order mock theta functions, we
gave very simple proofs in [9] and they are given by

(2.6) K(q) + 4A(−q) =
(q)5
∞

(q2; q2)4
∞

= (q; q)∞(q; q2)4
∞

and

(2.7)
B(q) +B(−q)

2
=

(q4; q4)5
∞

(q2; q2)4
∞

= (q4; q4)∞(−q2; q2)4
∞.

The three mock theta conjectures above along with (2.3) or (2.4) imply
that B(q), B(−q), A(−q4) and K(q4) have the same shadows h3(4τ) up
to a constant multiple of rational power of q.

Following [10], for any weight 2 − k (k ∈ 1
2
Z) cusp form g(τ) :=∑

n≥1 ag(n)qn, we define the former Eichler integral

(2.8) g̃(τ) :=
∑
n≥1

ag(n)nk−1qn.

The period integral of g(τ) is also given in [10] by

(2.9) g∗(τ) = (i/2)k−1

∫ i∞

−τ̄

g(z)

(z + τ)k
dz =

∑
n>0

nk−1ag(n)Γ(k, 4ny)q−n

where Γ(a, x) is the incomplete gamma function
∫∞
x
u−ke−πu du. g∗(τ)

is nearly modular of weight k in the lower half plane. It has been shown
in [7,10] that when g is a theta function, g̃(τ) and g∗(τ) agree to infinite
order at rational points.

Note that
(2.10)

η3(τ) =
∞∑
n=0

(−1)n(2n+1)q
(2n+1)2

8 =
∞∑

n=−∞

(4n+1)q
(4n+1)2

8 =
∞∑
n=1

(
−4

n

)
nq

n2

8 .

Hence by (2.8) the formal Eichler integral of η3(τ) is

(2.11) η̃3(τ) = q−
1
8

∞∑
n=0

(−1)nq−
n(n+1)

2 =
∞∑
n=1

(
−4

n

)
q−

n2

8 ,

which agrees the period integral of η3(τ) appearing in (2.3) to infinite
order at rational points.
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This was a motivation for Zagier [17] to define a quantum modu-
lar form. A quantum modular form is a complex function defined on
an appropriate subset of the rational numbers, which transforms like a
modular form up to the addition of an error function that is suitably
continuous or analytic in R. In [4, Proposition 1.4], it is shown that
η̃3(τ) is a quantum modular form of weight 1/2 and also in [4, Theorem
1.2], it is proved that q1/8A(q) is a quantum modular form of weight 1/2.

Under the notation in [4], η̃3(τ) and q1/8A(q) equal Ẽ1(τ/8) and V21(4τ),
respectively.

3. Universal Mock Theta Functions

We consider the following q-hypergeometric series:

(3.1) g2(w; q) :=
∞∑
n=0

(−q)nqn(n+1)/2

(w; q)n+1(q/w; q)n+1

,

(3.2) K(w; q) :=
∞∑
n=0

(−1)nqn
2
(q; q2)n

(wq2; q2)n(q2/w; q2)n
,

(3.3) K1(w; q) :=
∞∑
n=1

(−1)nqn
2
(q; q2)n

(wq; q2)n(q/w; q2)n
,

which have been substantially studied in [6, 12]. See also [8, 15]. As all
of Ramanujan’s original mock theta functions can be written in terms of
g2(w; q) and K(w; q) and K1(w; q) are related by modular transformation
to g2(w; q), we may call all of them universal mock theta functions.

These are direct generalizations of the 2nd order mock theta functions
in (2.1):

(3.4) K(q) = K(−1; q), A(−q) = K1(−1, q), and B(q) = g2(q, q2).

However, if we do not restrict ourselves to use an Eulerian form, there
is a genuine universal mock theta function discovered by Zwegers [18].
We begin with a more general function. For τ ∈ H, u, v ∈ C\(Zτ + Z),
and positive integer `, Zwegers [19] defined the level ` Appell function
A` by

(3.5) A`(u, v; τ) := w`/2
∞∑

n=−∞

(−1)`nq`n(n+1)/2zn

1− wqn
,
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where w = e2πiu, z = e2πiv, q = e2πiτ . By adding a suitable non-
holomorphic correction term, Zwegers showed that A` can be completed

to form essentially a real analytic Jacobi form, Â`. The normalized level
1 Appell function is the genuine universal mock theta function µ(u, v; τ)
of Zwegers, which is defined by

(3.6)

µ(u, v) := µ(u, v; τ) := ϑ(v; τ)−1A1(u, v; τ)

:=
w1/2

ϑ(v; τ)

∞∑
n=−∞

(−1)nqn(n+1)/2zn

1− wqn
,

where

(3.7) ϑ(v; τ) :=
∑
ν∈Z+ 1

2

eπiνzνq
ν2

2 = −iq
1
8 z−

1
2 (q)∞(z)∞(q/z)∞

is the Jacobi theta series. As noted in [9, Eq.(4.1) and (4.4)], the second
order mock theta functions are known to be level 2 Apell functions:
(3.8)

K(q) =
−4q1/8

ϑ(−1
2
; τ)

A2

(
−1

2
,−τ ; 2τ

)
and B(q) =

−iq−1/2

ϑ(2τ ; 4τ)
A2

(
τ,

1

2
; 2τ

)
.

There are two ways to reduce higher level Appell functions into linear
combinations of level 1 Appell functions in [19], but one does not able
to reduce the Appell functions above into Zwegers’ µ-functions due to
the occurrence of poles. Nevertheless, we here show that each of the
three 2nd order mock theta functions is a single Zwegers’ µ-function
up to holomorphic modular forms. These representations of the second
order mock theta functions would greatly help us to understand their
modularity in the whole complex plane.

Proposition 3.1. For |q| < 1,

A(q) = −iµ(τ, 2τ ; 4τ),(3.9)

B(q) = −iq−1/2µ(τ, τ ; 4τ),(3.10)

K(q) = −4µ(τ +
1

2
, 2τ ; 4τ) + (q; q2)5

∞(q2; q2)∞.(3.11)

Proof. By [4, Remark on p.15 and Table E2], A(q) = −q1/8V21(4τ) =
−iµ(τ, 2τ ; 4τ), which proves (3.9). Next, in [8, Theorem 1.1], it is shown
that

g2(w, q) =
η(2τ)4

iwη(τ)2ϑ(2u; 2τ)
− iq−1/4µ(2u, τ ; 2τ).
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McIntosh [13] showed that µ(u, τ − u; 2τ)− µ(2u, τ ; 2τ) =
η(2τ)4

wη(τ)2ϑ(2u; 2τ)
.

Hence g2(w, q) = −iq−1/4µ(u, τ − u; 2τ), and B(q) = g(q, q2) implies
(3.10). Lastly, it follows from (2.6) and (3.9) that

K(q) = −4A(−q) + (q; q2)5
∞(q2; q2)∞

= −4µ(τ − 1

2
, 2τ − 1; 4τ − 2) + (q; q2)5

∞(q2; q2)∞.

By applying transformation formula µ(u, v; τ + 1) = e−
πi
4 µ(u, v; τ) ( [18,

Proposition 1.5 (1)]) twice, we obtain

K(q) = −4µ(τ − 1

2
, 2τ − 1; 4τ) + (q; q2)5

∞(q2; q2)∞.

Since µ(u + 1, v) = −µ(u, v) = µ(u, v + 1) ( [18, Proposition 1.4]), we
have (3.11).

Zwegers [18] constructed a non-holomorphic function R(u; τ) for u ∈
C so that

µ̂(u, v; τ) := µ(u, v; τ) +
i

2
R(u− v; τ)

is a harmonic weak Maass form when two elliptic variables u and v are
restricted to torsion points Qτ + Q. In fact, for a, b ∈ R, R(aτ − b; τ)
is the period integral of a unary theta series as given in (2.9). More
precisely, for a, b ∈ R, if we define a unary theta series of weight 3/2 by

(3.12) ga,b(τ) :=
∑
ν∈a+Z

νeπiν
2τ+2πiνb,

then −
√

2e2πia(b+ 1
2

)q−a
2/2µ(u, v; τ) with u−v = aτ−b has the correction

term [18, Theorem 1.11]

(3.13) − i√
2
e2πia(b+ 1

2
)q−a

2/2R(aτ − b; τ).

Moreover, for a ∈ (−1
2
, 1

2
) and b ∈ R [18, Theorem 1.16],

(3.14) − e2πia(b+ 1
2

)q−a
2/2R(aτ − b; τ) =

∫ i∞

−τ̄

ga+ 1
2
,b+ 1

2
(z)√

−i(z + τ)
dz

and we call ga+ 1
2
,b+ 1

2
(−τ) the shadow of −

√
2e2πia(b+ 1

2
)q−a

2/2µ(u, v; τ).

For a full description of the notions of harmonic Maass forms, mock
modular forms, and shadows, the reader is referred to [14,16].
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4. The second order mock theta functions in the lower half
plane

For |q| < 1, let

S1(q) :=
∞∑
n=0

(−1)nq
n(n+1)

2 ,

S2(q) :=
∞∑
n=0

(
−12

n

)
q
n2−1
24 =

∞∑
n=0

qn(3n+1)/2(1− q2n+1),

S3(q) :=
∞∑
n=0

(n
3

)
q
n2−1

3 =
∞∑
n=0

qn(3n+2)(1− q2n+1).

(4.1)

S1 is essentially a half of 0 =
∑

n∈Z(−1)nq
n(n+1)

2 and S2 is a wrong linear

combination of partial theta functions in the sense that q−1/24η(τ) =
(q; q)∞ =

∑∞
n=−∞(−1)nqn(3n+1)/2 by Euler’s pentagonal number theo-

rem. S3 also has a wrong character to be a theta function. This is
why series like in (4.1) are often called partial theta functions or false
theta functions. Note that S1 is the partial theta function corresponding
to Eichler integral of η3(τ) in (2.11), which is defined in the lower half
plane.

The three 2nd order mock theta functions are defined in the lower
half plane as well. From (2.1), we obtain for |q| < 1 that

A−(q) := A(q−1) =
∞∑
n=0

q2n+1(−q; q2)n
(q; q2)2

n+1

,

B−(q) := B(q−1) =
∞∑
n=0

q2n+2(−q2; q2)n
(q; q2)2

n+1

,

K−(q) := K(q−1) =
∞∑
n=0

q2n(q; q2)n
(−q2; q2)2

n

.

(4.2)

Representations of the second order mock theta functions in (4.2),
however do not help us much to understand their behavior in the lower
half plane. In [2], the universal mock Jacobi forms in (3.1), (3.2) and
(3.3) are discussed both in the upper and lower half planes.
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Theorem 4.1. For |q| < 1,

A−(q) =
1

2
S1(−q) +

(−q; q2)∞
(q; q2)2

∞
S2(q2).

B−(q) = −q−1S1(q4)− q(1− q)(−q2; q2)∞
(q; q2)2

∞
S3(q).

K−(q) = 2S1(q)− (q; q2)∞
(−q2; q2)2

∞
S3(q).

(4.3)

Proof. From [2, Eqs. (5.3) and (3.1), Remark in Theorem 3.1], we find
that

A−(−q) = K1(−1, q−1) =
1

2
S1(q) +

(q; q2)∞
(−q; q2)2

∞
S2(q2),

and this proves the first identity. Also by using [2, Eqs. (5.4) and (3.1)]
and K(q) = K(−1; q) in (3.4), we can easily deduce the third identity.
For the second identity, note that B(q) = g2(q; q2) where g2(w; q) is
defined in (3.4). Hence we need to compute B−(q) = g2(q−1; q−2). It
follows from [2, Theorem 4.2 and Eqs. (4.2) and (4.3)] that for |q| < 1
and w 6= q2` (` 6∈ Z),
(4.4)

g2(w; q−2) =
∞∑
n=1

(−1)nw2n−1q2n2

+
(−q2; q2)∞

(wq2; q2)∞(w−1q2; q2)∞

∞∑
n=1

w3n−2q3n2−n(1− wq2n).

Substituting w = q−1, we have

g2(q−1; q−2) = −qS1(q4) +
(1− q)(−q2; q2)∞

(q; q2)2
∞

∞∑
n=1

q3n2−4n+2(1− q2n−1),

from which we can easily derive the second identity in the theorem.

Any property a function holds in the upper half plane does not nec-
essarily hold in the lower half plane although it is well defined in both
planes. But by comparing (2.5) and (2.6) with (4.3), we see that the
three 2nd order mock theta functions carry some properties from the
upper half plane to lower. Also, they are essentially the same partial
theta functions, the Eichler integrals of η3(τ) up to products of theta
quotients and partial theta functions in the lower half plane, because
the three mock theta functions essentially have the same shadow η3(τ).
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The Eichler integral of η3(τ) or partial theta function S1(q) is also de-
fined on a subset of rational numbers. What happens is as follows: there
is the mock theta function q1/8K(q) in the upper half plane and partial
(or false) theta function q1/8S1(q) in the lower half plane corresponding
to the correction term of the mock theta function, which is the Eich-
ler integral of η3(τ). Moreover, the two are connected through rational
points via x1/8K(x) = x1/8S1(x) where x is in some subset of Q, because
at certain sets of rational points, the second term in the representation of
K−(q) in (4.3) vanishes. In [5, Theorem 1.3], it is proved that q1/8S1(q)
is a quantum modular form of weight 1/2 and hence q1/8K(q) is also
a quantum modular form. Similarly, A(q) and B(q) are also quantum
modular forms up to constant multiples of rational power of q.
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