DOI QR코드

DOI QR Code

Analysis of Irrigation Water Amount Variability based on Crops and Soil Physical Properties Using the IWMM Model

IWMM 모형을 이용한 작물과 토양의 물리적 특성에 따른 관개용수량 변동 특성 분석

  • Shin, Yongchu (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
  • Received : 2017.01.20
  • Accepted : 2017.02.15
  • Published : 2017.03.31

Abstract

In this study, we analyzed the variability of irrigation water amounts based on the combination of various crops and soil textures using the Irrigation Water Management Model (IWMM). IWMM evaluates the degree of agricultural drought using the Soil Moisture Deficit Index (SMDI). When crops are damaged by the water scarcity under the drought condition indicating that the SMDI values are in negative (SMDI<0), IWMM irrigates appropriate water amounts that can shift the negative SMDI values to "0" to crop fields. To test the IWMM model, we selected the Bandong-ri (BDR) and Jucheon (JC) sites in Gangwon-do and Jeollabuk-do provinces. We derived the soil hydraulic properties using the near-surface data assimilation scheme form the Time Domain Reflectrometry (TDR)-based soil moisture measurements. The daily root zone soil moisture dynamics (R: 0.792/0.588 and RMSE: 0.013/0.018 for BDR/JC) estimated by the derived soil parameters were matched well with the TDR-based measurements for validation. During the long-term (2001~2015) period, IWMM irrigated the minimum water amounts to crop fields, while there were no irrigation events during the rainy days. Also, Sandy Loam (SL) and Silt (Si) soils require more irrigation water amounts than others, while the irrigation water were higher in the order of radish, wheat, soybean, and potato, respectively. Thus, the IWMM model can provide efficient irrigation water amounts to crop fields and be useful for regions at where limited water resources are available.

Keywords

References

  1. Belmans, C., J. G. Wesseling, and R. A. Feddes, 1983. Simulation of the water balance of a cropped soil. SWATRE. J. Hydrol. 63: 271-286. https://doi.org/10.1016/0022-1694(83)90045-8
  2. Eom, K. C., S. K. ha, S. O. Hur, Y. S. Jung, and K. S. Ryu, 1999. Soil Water. Korean J. Soil Sci. Fert. 42: 102-125.
  3. Eom, K. C., P. K. Jung, M. H. Koh, S. H. Kim, S. Y. Yoo, S. H. Park, S. O. Hur, and S. K. Ha, 2010. Water saving irrigation manual of spring chinese cabbage, Korean J. Soil Sci. Fert. 43(6): 812-822.
  4. Feddes, R. A., P. J. Kowalik, and H. Zarandy, 1978. Simulation of field water use and crop yield. Simulation Monographs. Pudoc. Wageningen, The Netherlands.
  5. Goldberg, D. E., 1989. Genetic algorithms in search and optimization and machine learning. Addison-Wesley Publishing Co Inc, USA.
  6. Holland, J. H., 1975. On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: a numerical study for mixed pixel environment. Adv Water Resour. 28: 856-870.
  7. Ines, A. V. M. and K. Honda, 2005. On quantifying agricultural and water management practices from low spatial resolution RS data using genetic algorithms: A numerical study for mixedpixel environment. Adv. Water Resour. 28: 856-870. https://doi.org/10.1016/j.advwatres.2004.11.015
  8. Ines, A. V. M. and B. P. Mohanty, 2008a. Near-surface soil moisture assimilation to quantify effective soil hydraulic properties using genetic algorithm. I. Conceptual modeling. Water Resour. Res. 44: doi:10.1029/2007WR005990.
  9. Ines, A. V. M. and B. P. Mohanty, 2008b. Near-surface soil mMoisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: II. Using airborne remote sensing dyring SGP97 and SMEX02. Water Resour. Res. 45: doi:10.1029/2008WR007022.
  10. Ines, A. V. M. and B. P. Mohanty, (2009), Near-surface soil moisture assimilation for quantifying effective soil hydraulic properties using genetic algorithms: II. Using airborne remote sensing dyring SGP97 and SMEX02. Water Resour. Res. 45: doi:10.1029/2008WR007022.
  11. Jeon, S., 2010. Optimum conditions of automatic irrigation control system and irrigation for cucumber cultivation under greenhouse, Ph.D Dissertation. Major in Agricultural Chemistry, Chungbuk National Univerity.
  12. Jung, P. K., K. C. Eom, Y. K. Son, M. H. Koh, S. H. Kim, S. H. Park, and S. Y. Yoo, 2011. Water saving irrigation manual of autumn chinese cabbage. Korean J. Soil Sci. Fert. 44(5): 679-687. https://doi.org/10.7745/KJSSF.2011.44.5.679
  13. Kim, H. S., Y. I. Lee, B. K. Kang, C. K. Song, and T. K. Jun, 2005. Analysis of irrigation water use for upland crops in Jeju. KCID. 12(1): 50-59.
  14. Kroes, J. G., J. C. van Dam, J. Huygen, and R. W. Vervoort, 1999. User's guide of SWAP version 2.0; Simulation of water, solute transport, and plant growth in the Soil-Atmosphere-Plant environment, Wageningen Agricultural University, Report 81, DLO Winand Staring Centre. Technical Document, pp. 53-128.
  15. Leij, F. J., W. J. Alves, M. T. van Genuchten, and J. R. Williams JR, 1999. The UNSODA unsaturated soil hydraulic database, in Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media. edited by M. T. Van Genuchten et al., Univ. of Calif.., Riverside, USA, pp. 1269-1281.
  16. Ministry of Agriculture Food and Rural Affairs, 2012. Food, agriculture, forestry and fisheries statistical yearbook.
  17. Mualem, Y., 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12: 513-522. https://doi.org/10.1029/WR012i003p00513
  18. Narasimhan, B. and R. Srinivasan, 2005. Development and evaluationof soil moisture deficit index (SMDI) and Evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric. Forest Meteorol. 133: 69-88. https://doi.org/10.1016/j.agrformet.2005.07.012
  19. Shin, Y., B. P. Mohanty, and A. V. M. Ines, 2012. Soil hydraulic properties in one-dimensional layered soil profile using layerspecific soil moisture assimilation scheme. Water Resour. Res. 48: W06529, doi:10.1029/2010WR009581.
  20. Shin, Y. and B. P. Mohanty, 2013. Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resour. Res. 49. doi: 10.1002/wrcr.20495.
  21. Shin, Y. and Y. Jung, 2014. Development of irrigation water management model for reducing drought severity using remotely sensed soil moisture footprints, J. Irrig. Drain. Eng. 140(7): 1-11.
  22. Shin, Y., K. S. Choi, Y. Jung, J. E. Yang, and K. J. Lim, 2016. Soil moisture estimation and drought assessment at the spatiotemporal scales using remotely sensed data: (I) Soil moisture, J. Korean Soc. Water Envir. 32(1): 60-69. https://doi.org/10.15681/KSWE.2016.32.1.60
  23. van Genuchten, M. T., 1980. A closed-form equation foe predicting the hydraulic conductivity of unsaturated soils. J. Soil Sci Soc Am. 44: 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  24. van Dam, J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V. van Waslum, P. Groenendjik, and C. A. van Diepen, 1997. Theory of SWAP version 2.0: Simulation of water flow and plant growth in the soil water-atmosphere-plant environment. Tech. Doc. 45, Wageningen Agric.Univ., and DLO Winand Staring Cent., Wageningen, Netherlands.
  25. van Dam, J. C., 2000. Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Ph.D dissertation, Wageningen Univ., Wageningen, the Netherlands.