DOI QR코드

DOI QR Code

Vibration analysis of generalized thermoelastic microbeams resting on visco-Pasternak's foundations

  • Zenkour, Ashraf M. (Department of Mathematics, Faculty of Science, King Abdulaziz University)
  • Received : 2016.03.10
  • Accepted : 2016.07.22
  • Published : 2017.05.25

Abstract

The natural vibration analysis of microbeams resting on visco-Pasternak's foundation is presented. The thermoelasticity theory of Green and Naghdi without energy dissipation as well as the classical Euler-Bernoulli's beam theory is used for description of natural frequencies of the microbeam. The generalized thermoelasticity model is used to obtain the free vibration frequencies due to the coupling equations of a simply-supported microbeam resting on the three-parameter viscoelastic foundation. The fundamental frequencies are evaluated in terms of length-to-thickness ratio, width-to-thickness ratio and three foundation parameters. Sample natural frequencies are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Keywords

References

  1. Al Khateeb, S.A. and Zenkour, A.M. (2014), "A refined four-unknown plate theory for advanced plates resting on elastic foundations in hygrothermal environment", Compos. Struct., 111(1), 240-248. https://doi.org/10.1016/j.compstruct.2013.12.033
  2. Chen, Y.H., Huang, Y.H. and Shih, C.T. (2001), "Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load", J. Sound Vib., 241, 809-824. https://doi.org/10.1006/jsvi.2000.3333
  3. Ding, H., Chen, L.Q. and Yang, S.P. (2012), "Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load", J. Sound Vib., 331, 2426-2442. https://doi.org/10.1016/j.jsv.2011.12.036
  4. Goodarzi, M., Mohammadi, M., Farajpour, A. and Khooran, M. (2014), "Investigation of the effect of prestressed on vibration frequency of rectangular nanoplate based on a viscoPasternak foundation", J. Solid Mech., 6, 98-121.
  5. Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elast., 31, 189-208. https://doi.org/10.1007/BF00044969
  6. Guo, F.L. and Rogerson, G.A. (2003), "Thermoelastic coupling effect on a micro-machined beam resonator", Mech. Res. Commun., 30, 513-518. https://doi.org/10.1016/S0093-6413(03)00061-2
  7. Hashemi, S.H., Mehrabani, H. and Ahmadi-Savadkoohi, A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by viscoPasternak medium", Composit. B, 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008
  8. Jumel, J., Chauffaille, S., Budzik, M.K., Shanahan, M.E.R. and Guitard, J. (2013), "Viscoelastic foundation analysis of single cantilevered beam (SCB) test under stationary loading", Eur. J. Mech. A/Solid., 39, 170-179. https://doi.org/10.1016/j.euromechsol.2012.10.005
  9. Kargarnovin, M.H. and Younesian, D. (2004), "Dynamics of timoshenko beams on Pasternak foundation under moving load", Mech. Res. Commun., 31, 713-723. https://doi.org/10.1016/j.mechrescom.2004.05.002
  10. Kargarnovin, M.H., Younesian, D., Thompson, D. and Jones, C. (2005), "Response of beams on nonlinear viscoelastic foundations to harmonic moving loads", Comput. Struct., 83, 1865-1877. https://doi.org/10.1016/j.compstruc.2005.03.003
  11. Mohammadimehr, M., Monajemi, A.A. and Moradi, M. (2015), "Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-Pasternak foundation using DQM", J. Mech. Sci. Tech., 29, 2297-2305. https://doi.org/10.1007/s12206-015-0522-2
  12. Muscolino, G. and Palmeri, A. (2007), "Response of beams resting on viscoelastically damped foundation to moving oscillators", Int. J. Solid. Struct., 44, 1317-1336. https://doi.org/10.1016/j.ijsolstr.2006.06.013
  13. Peng, L. and Wang, Y. (2015), "Free vibrations of beams on viscoelastic Pasternak foundations", Appl. Mech. Mater., 744-746, 1624-1627. https://doi.org/10.4028/www.scientific.net/AMM.744-746.1624
  14. Sapountzakis, E.J. and Kampitsis, A.E. (2011), "Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads", J. Sound Vib., 330, 5410-5426. https://doi.org/10.1016/j.jsv.2011.06.009
  15. Sun, L. (2001), "A closed-form solution of a Bernoulli-Euler beam on a viscoelastic foundation under harmonic line loads", J. Sound Vib., 242, 619-627. https://doi.org/10.1006/jsvi.2000.3376
  16. Sun, Y. and Saka, M. (2010), "Thermoelastic damping in micro-scale circular plate resonators", J. Sound Vib., 329, 328-337. https://doi.org/10.1016/j.jsv.2009.09.014
  17. Younesian, D., Kargarnovin, M., Thompson, D. and Jones, C. (2006), "Parametrically excited vibration of a Timoshenko beam on random viscoelastic foundation subjected to a harmonic moving load", Nonlin. Dyn., 45, 75-93. https://doi.org/10.1007/s11071-006-1460-4
  18. Zenkour, A.M. (2009), "The refined sinusoidal theory for FGM plates resting on elastic foundations", Int. J. Mech. Sci., 51, 869-880. https://doi.org/10.1016/j.ijmecsci.2009.09.026
  19. Zenkour, A.M. (2010), "Hygro-thermo-mechanical effects on FGM plates resting on elastic foundations", Compos. Struct., 93, 234-238. https://doi.org/10.1016/j.compstruct.2010.04.017
  20. Zenkour, A.M. (2015), "A comparative study for bending of composite laminates resting on elastic foundations", Smart Struct. Syst., 15, 1569-1582. https://doi.org/10.12989/sss.2015.15.6.1569
  21. Zenkour, A.M. (2016a), "Nonlocal transient thermal analysis of a single-layered graphene sheet embedded in viscoelastic medium", Physica E., 79, 87-97. https://doi.org/10.1016/j.physe.2015.12.003
  22. Zenkour, A.M. (2016b), "Vibration analysis of a single-layered graphene sheet embedded in visco-Pasternak's medium using nonlocal elasticity theory", J. Vibroeng., 18, 2319-2330. https://doi.org/10.21595/jve.2016.16585
  23. Zenkour, A.M. and Sobhy, M. (2011), "Thermal buckling of functionally graded plates resting on elastic foundations using the trigonometric theory", J. Therm. Stress., 34, 1119-1138. https://doi.org/10.1080/01495739.2011.606017
  24. Zhang, C. and Wang, J. (2012), "Interface stress redistribution in FRP-strengthened reinforced concrete beams using a three-parameter viscoelastic foundation model", Compos. B, 43, 3009-3019. https://doi.org/10.1016/j.compositesb.2012.05.042

Cited by

  1. Effect of the Viscoelastic Foundations on the Free Vibration of Functionally Graded Plates vol.19, pp.11, 2019, https://doi.org/10.1142/s0219455419501360
  2. Wave Propagation in an Unbounded Magneto-Thermoelastic Rotating Medium Permeated by a Heat Source vol.141, pp.11, 2017, https://doi.org/10.1115/1.4044513
  3. Memory response in elasto-thermoelectric spherical cavity vol.9, pp.4, 2020, https://doi.org/10.12989/csm.2020.9.4.325