DOI QR코드

DOI QR Code

Sensitivity Enhancement in Solution NMR via Photochemically Induced Dynamic Nuclear Polarization

  • Im, Jonghyuk (Department of Chemistry, Seoul National University) ;
  • Lee, Jung Ho (Department of Chemistry, Seoul National University)
  • Received : 2017.01.15
  • Accepted : 2017.03.02
  • Published : 2017.03.20

Abstract

Enhancements in NMR sensitivity have been the main driving force to extend the boundaries of NMR applications. Recently, techniques to shift the thermally populated nuclear spin states are employed to gain high NMR signals. Here, we introduce a technique called photochemically induced dynamic nuclear polarization (photo-CIDNP) and discuss its progresses in enhancing the solution-state NMR sensitivity.

Keywords

References

  1. F. Bloch, W. W. Hansen, and M. Packard, Phys. Rev. 70, 460 (1946) https://doi.org/10.1103/PhysRev.70.460
  2. R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Vol. 14, Clarendon Press Oxford (1987)
  3. G. A. Morris, and R. Freeman, J. Am. Chem. Soc. 101, 760 (1979) https://doi.org/10.1021/ja00497a058
  4. A. Bax, S. W. Sparks, and D. A. Torchia, Methods Enzymol. 176, 134 (1989)
  5. K. Pervushin, R. Riek, G. Wider, and K. Wuthrich, Proc. Natl. Acad. Sci. U.S.A. 94, 12366 (1997) https://doi.org/10.1073/pnas.94.23.12366
  6. J. H. Lee, Y. Okuno, and S. Cavagnero, J. Magn. Reson. 241, 18 (2014) https://doi.org/10.1016/j.jmr.2014.01.005
  7. J. H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, M. Thaning, and K. Golman, Proc. Natl. Acad. Sci. U.S.A. 100, 10158 (2003) https://doi.org/10.1073/pnas.1733835100
  8. B. M. Goodson, J. Magn. Reson. 155, 157 (2002) https://doi.org/10.1006/jmre.2001.2341
  9. W. Happer, Rev. Mod. Phys. 44, 169 (1972) https://doi.org/10.1103/RevModPhys.44.169
  10. T. Maly, G. T. Debelouchina, V. S. Bajaj, K. N. Hu, C. G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. van der Wel , J. Herzfeld, R. J. Temkin, and R. G. Griffin, J. Chem. Phys. 128, 052211 (2008) https://doi.org/10.1063/1.2833582
  11. J. Natterer, and J. Bargon, Prog. Nucl. Magn. Reson. Spectrosc. 31, 293 (1997) https://doi.org/10.1016/S0079-6565(97)00007-1
  12. H. R. Ward, and R. G. Lawler, J. Am. Chem. Soc. 89, 5518 (1967) https://doi.org/10.1021/ja00997a078
  13. J. Bargon, H. Fischer, and U. Johnsen, Z. Naturforsch. A 22, 1551 (1967)
  14. M. Cocivera, J. Am. Chem. Soc. 90, 3261 (1968) https://doi.org/10.1021/ja01014a064
  15. L. T. Kuhn, Hyperpolarization Methods in NMR Spectroscopy, Vol. 338, Springer-Verlag, Berlin (2013)
  16. J. Hore, and R. Broadhurst, Prog. Nucl. Magn. Reson. Spectrosc. 25, 345 (1993) https://doi.org/10.1016/0079-6565(93)80002-B
  17. R. Kaptein, K. Dijkstra, and K. Nicolay, Nature 274, 293 (1978) https://doi.org/10.1038/274293a0
  18. K. H. Mok, L. T. Kuhn, Martin Goez, I. J. Day, J. C. Lin, N. H. Andersen, and P. J. Hore, Nature 447, 106 (2007) https://doi.org/10.1038/nature05728
  19. K. H. Mok, and P. J. Hore, Methods 34, 75 (2004) https://doi.org/10.1016/j.ymeth.2004.03.006
  20. O. B. Morozova, and A. V. Yurkovskaya, J. Phys. Chem. B 119, 12644 (2015) https://doi.org/10.1021/acs.jpcb.5b07333
  21. I. Kuprov, T. D. Craggs, S. E. Jackson, and P. Hore, J. Am. Chem. Soc. 129, 9004 (2007) https://doi.org/10.1021/ja0705792
  22. R. Kaptein, and J. Oosterhoff, Chem. Phys. Lett. 4, 195 (1969) https://doi.org/10.1016/0009-2614(69)80098-9
  23. G. L. Closs, J. Am. Chem. Soc. 91, 4552 (1969) https://doi.org/10.1021/ja01044a043
  24. H. Seki, A. Takematsu, and S. Arai, J. Phys. Chem. 91, 176 (1987) https://doi.org/10.1021/j100285a038
  25. J. H. Lee, A. Sekhar, and S. Cavagnero, J. Am. Chem. Soc. 133, 8062 (2011) https://doi.org/10.1021/ja111613c
  26. A. Sekhar, and S. Cavagnero, J. Magn. Reson. 200, 207 (2009) https://doi.org/10.1016/j.jmr.2009.07.001
  27. J. H. Lee, and S. Cavagnero, J. Phys. Chem. B 117, 6069 (2013) https://doi.org/10.1021/jp4010168
  28. Y. Okuno, and S. Cavagnero, J. Phys. Chem. B 120, 715 (2016)
  29. I. Kuprov, and P. Hore, J. Magn. Reson. 171, 171 (2004) https://doi.org/10.1016/j.jmr.2004.08.017
  30. O. B. Morozova, P. Hore, V. E. Bychkova, R. Z. Sagdeev, and A. V. Yurkovskaya, J. Phys. Chem. B 109, 5912 (2005) https://doi.org/10.1021/jp045367v
  31. G. L. Closs, R. J. Miller, and O. D. Redwine, Acc. Chem. Res. 18, 196 (1985) https://doi.org/10.1021/ar00115a001
  32. M. G. Zysmilich, and A. McDermott, J. Am. Chem. Soc. 116, 8362 (1994) https://doi.org/10.1021/ja00097a052
  33. J. Matysik, A. Diller, E. Roy, and A. Alia, Photosynth. Res. 102, 427 (2009) https://doi.org/10.1007/s11120-009-9403-9
  34. T. Polenova, and A. E. McDermott, J. Phys. Chem. B 103, 535 (1999) https://doi.org/10.1021/jp9822642
  35. A. McDermott, M. N. G. Zysmilich, and T. Polenova, Solid State Nucl. Magn. Reson. 11, 21 (1998) https://doi.org/10.1016/S0926-2040(97)00094-5
  36. G. Jeschke, J. Am. Chem. Soc. 120, 4425 (1998) https://doi.org/10.1021/ja973744u
  37. S. S. Thamarath, J. Heberle, P. J. Hore, T. Kottke, and J. Matysik, J. Am. Chem. Soc. 132, 15542 (2010) https://doi.org/10.1021/ja1082969
  38. E. Daviso, G. J. Janssen, A. Alia, G. Jeschke, J. Matysik, and M. Tessari, J. Am. Chem. Soc. 133, 16754 (2011) https://doi.org/10.1021/ja206689t
  39. G. Kothe, M. Lukaschek, G. Link, S. Kacprzak, B. Illarionov, M. Fischer, W. Eisenreich, A. Bacher, and S. Weber, J. Phys. Chem. B 118, 11622 (2014) https://doi.org/10.1021/jp507134y
  40. V. I. Valyayev, Yu. N. Molin, R. Z. Sagdeev, P. J. Hore, K. A. McLauchlan, and N. J. K. Simpson, Mol. Phys. 63, 891 (1988) https://doi.org/10.1080/00268978800100631
  41. L. Frydman, T. Scherf, and A. Lupulescu, Proc. Natl. Acad. Sci. U.S.A. 99, 15858 (2002) https://doi.org/10.1073/pnas.252644399
  42. E. Kupce, R. Freeman, and B. K. John, J. Am. Chem. Soc. 128, 9606 (2006) https://doi.org/10.1021/ja0634876