DOI QR코드

DOI QR Code

Comparison of Metabolic Profiles of Normal and Cancer Cells in Response to Cytotoxic Agents

  • Lee, Sujin (Natural Product Research Institute, College of Pharmacy, Seoul National University) ;
  • Kang, Sunmi (Natural Product Research Institute, College of Pharmacy, Seoul National University) ;
  • Park, Sunghyouk (Natural Product Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2017.02.21
  • Accepted : 2017.03.13
  • Published : 2017.03.20

Abstract

Together with radiotherapy, chemotherapy using cytotoxic agents is one of the most common therapies in cancer. Metabolic changes in cancer cells are drawing much attention recently, but the metabolic alterations by anticancer agents have not been much studied. Here, we investigated the effects of commonly used cytotoxic agents on lung normal cell MRC5 and lung cancer cell A549. We employed cis-plastin, doxorubicin, and 5-Fluorouracil and compared their effects on the viability and metabolism of the normal and cancer cell lines. We first established the concentration of the cytotoxic reagents that give differences in the viabilities of normal and cancer cell lines. In those conditions, the viability of A549 decreased significantly, whereas that of MRC5 remained unchanged. To study the metabolic alterations implicated in the viability differences, we obtained the metabolic profiles using $^1H$-NMR spectrometry. The $^1H$-NMR data showed that the metabolic changes of A549 cells are more remarkable than that of MRC5 cells and the effect of 5-FU on the A549 cells is the most distinct compared to other treatments. Heat map analysis showed that metabolic alterations under treatment of cytotoxic agents are totally different between normal and cancer cells. Multivariate analysis and weighted correlation network analysis (WGCNA) revealed a distinctive metabolite signature and hub metabolites. Two different analysis tools revealed that the changes of cell metabolism in response to cytotoxic agents were highly correlated with the Warburg effect and Reductive lipogenesis, two pathways having important effects on the cell survival. Taken together, our study addressed the correlation between the viability and metabolic profiles of MRC5 and A549 cells upon the treatment of cytotoxic anticancer agents.

Keywords

References

  1. P. Hammel, O. Hentic, C. Neuzillet, S. Faivre, E. Raymond, and P. Ruszniewski, Target Oncol. 7, 169 (2012) https://doi.org/10.1007/s11523-012-0228-7
  2. I. F. Duarte, A. F. Ladeirinha, I. Lamego, A. M. Gil, L. Carvalho, I. M. Carreira, and J. B. Melo, Mol. pharmaceutics 10, 4242 (2013) https://doi.org/10.1021/mp400335k
  3. M. S. Ham, J. K. Lee, and K. C. Kim, Mol. Clin. Oncol. 1, 373 (2013) https://doi.org/10.3892/mco.2012.53
  4. S. Lv, Z. Tang, M. Li, J. Lin, W. Song, H. Liu, Y. Huang, Y. Zhang, and X. Chen, Biomaterials 35, 6118 (2014) https://doi.org/10.1016/j.biomaterials.2014.04.034
  5. Z. H. Siddik, Oncogene 22, 7265 (2003) https://doi.org/10.1038/sj.onc.1206933
  6. A. Schulze, and A. L. Harris, Nature 491, 364 (2012) https://doi.org/10.1038/nature11706
  7. R. Possemato, K. M. Marks, Y. D. Shaul, M. E. Pacold, D. Kim, K. Birsoy, S. Sethumadhavan, H. K. Woo, H. G. Jang, A. K. Jha, W. W. Chen, F. G. Barrett, N. Stransky, Z. Y. Tsun, G. S. Cowley, J. Barretina, N. Y. Kalaany, P. P. Hsu, K. Ottina, A. M. Chan, B. Yuan, L. A. Garraway, D. E. Root, M. Mino-Kenudson, E. F. Brachtel, E. M. Driggers, and D. M. Sabatini, Nature 476, 346 (2011) https://doi.org/10.1038/nature10350
  8. C. M. Metallo, P. A. Gameiro, E. L. Bell, K. R. Mattaini, J. Yang, K. Hiller, C. M. Jewell, Z. R. Johnson, D. J. Irvine, L. Guarente, J. K. Kelleher, M. G. Vander Heiden, O. Iliopoulos, and G. Stephanopoulos, Nature 481, 380 (2012) https://doi.org/10.1038/nature10602
  9. A. S. Lee, Nature reviews. Cancer 14, 263 (2014) https://doi.org/10.1038/nrc3701
  10. M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A. L. Souza, R. Kafri, M. W. Kirschner, C. B. Clish, and V. K. Mootha, Science 336, 1040 (2012) https://doi.org/10.1126/science.1218595
  11. M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson, Science 324, 1029 (2009) https://doi.org/10.1126/science.1160809
  12. S. Akakura, E. Ostrakhovitch, R. Sanokawa-Akakura, and S. Tabibzadeh, Biochem. Biophys. Res. Commun. 448, 461 (2014) https://doi.org/10.1016/j.bbrc.2014.04.138
  13. L. M. Phan, S. C. Yeung, and M. H. Lee, Cancer Biol. Med. 11, 1 (2014)
  14. R. J. DeBerardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff, S. Wehrli, and C. B. Thompson, Proc. Natl. Acad. Sci. U. S. A. 104, 19345 (2007) https://doi.org/10.1073/pnas.0709747104
  15. D. R. Wise, R. J. DeBerardinis, A. Mancuso, N. Sayed, X. Y. Zhang, H. K. Pfeiffer, I. Nissim, E. Daikhin, M. Yudkoff, S. B. McMahon, and C. B. Thompson, Proc. Natl. Acad. Sci. U. S. A. 105, 18782 (2008) https://doi.org/10.1073/pnas.0810199105
  16. D. I. Benjamin, A. Cozzo, X. Ji, L. S. Roberts, S. M. Louie, M. M. Mulvihill, K. Luo, and D. K. Nomura, Proc. Natl. Acad. Sci. U. S. A. 110, 14912 (2013) https://doi.org/10.1073/pnas.1310894110
  17. C. Zhu, W. Hu, H. Wu, and X. Hu, Sci. Rep. 4, 5029 (2014)
  18. P. Tripathi, B. S. Somashekar, M. Ponnusamy, A. Gursky, S. Dailey, P. Kunju, C. T. Lee, A. M. Chinnaiyan, T. M. Rajendiran, and A. Ramamoorthy, J. Proteome Res. 12, 3519 (2013) https://doi.org/10.1021/pr4004135
  19. A. Irfan, M. Cauchi, W. Edmands, N. J. Gooderham, J. Njuguna, and H. Zhu, Toxicol Sci. 138, 354 (2014) https://doi.org/10.1093/toxsci/kfu009
  20. K. Akira, H. Hichiya, M. Morita, A. Shimizu, and H. Mitome, J. Pharm. Biomed. Anal. 85, 155 (2013) https://doi.org/10.1016/j.jpba.2013.07.018
  21. D. Yoon, S. Ma, H. Choi, H. Noh, Y. Ok, and S. Kim, J. Kor. Magn. Reson. Soc. 20, 121 (2016) https://doi.org/10.6564/JKMRS.2016.20.4.121
  22. S. Lee, J. Kor. Magn. Reson. Soc. 20, 87 (2016) https://doi.org/10.6564/JKMRS.2016.20.3.087
  23. J. Kim, S. K. Keay, J. D. Dimitrakov, and M. R. Freeman, FEBS Lett. 581, 3795 (2007) https://doi.org/10.1016/j.febslet.2007.06.058
  24. B. Chaneton, P. Hillmann, L. Zheng, A. C. Martin, O. D. Maddocks, A. Chokkathukalam, J. E. Coyle, A. Jankevics, F. P. Holding, K. H. Vousden, C. Frezza, M. O'Reilly, and E. Gottlieb, Nature 491, 458 (2012) https://doi.org/10.1038/nature11540
  25. J. Kang, S. Lee, S. Kang, H. N. Kwon, J. H. Park, S. W. Kwon, and S. Park, Arch. Pharmacal Res. 31, 330 (2008) https://doi.org/10.1007/s12272-001-1160-2
  26. H. Wen, S. Kang, Y. Song, Y. Song, S. H. Sung, and S. Park, Phytochem. Anal. 21, 73 (2010) https://doi.org/10.1002/pca.1166
  27. P. Langfelder, and S. Horvath, BMC Bioinf. 9, 559 (2008) https://doi.org/10.1186/1471-2105-9-559
  28. J. Wang, L. Chen, X. Tian, L. Gao, X. Niu, M. Shi, and W. Zhang, J. Proteome Res. 12, 5302 (2013) https://doi.org/10.1021/pr400640u
  29. S. E. Elf, and J. Chen, Cancer 120, 774 (2014) https://doi.org/10.1002/cncr.28501
  30. A. L. Simons, I. M. Ahmad, D. M. Mattson, K. J. Dornfeld, and D. R. Spitz, Cancer Res. 67, 3364 (2007) https://doi.org/10.1158/0008-5472.CAN-06-3717
  31. S. Liu, W. Wang, X. Zhou, R. Gu, and Z. Ding, Environ. Toxicol. Pharmacol. 37, 150 (2014) https://doi.org/10.1016/j.etap.2013.11.016
  32. A. Lodi, and S. M. Ronen, PloS one 6, e26155 (2011) https://doi.org/10.1371/journal.pone.0026155
  33. M. W. Dewhirst, Y. Cao, C. Y. Li, and B. Moeller, Radiother. Oncol. 83, 249 (2007) https://doi.org/10.1016/j.radonc.2007.05.016
  34. Y. Zhao, E. B. Butler, and M. Tan, Cell Death Dis. 4, e532 (2013) https://doi.org/10.1038/cddis.2013.60
  35. H. J. Jang, and S. J. Kim, J. Recept. Signal Transduction Res. 33, 387 (2013) https://doi.org/10.3109/10799893.2013.839999
  36. C. Gorrini, I. S. Harris, and T. W. Mak, Nat. Rev. Drug Discovery 12, 931 (2013) https://doi.org/10.1038/nrd4002
  37. D. T. Vincent, Y. F. Ibrahim, M. G. Espey, and Y. J. Suzuki, Cancer Chemother. Pharmacol. 72, 1157 (2013) https://doi.org/10.1007/s00280-013-2260-4
  38. S. Crawford, Ther. Adv. Med. Oncol. 6, 52 (2014) https://doi.org/10.1177/1758834014521111
  39. K. Gaurav, R. K. Goel, M. Shukla, and M. Pandey, Indian J. Med. Paediatr. Oncol. 33, 13 (2012) https://doi.org/10.4103/0971-5851.96962
  40. M. B. Braga-Neto, C. A. Warren, R. B. Oria, M. S. Monteiro, A. A. Maciel, G. A. Brito, A. A. Lima, and R. L. Guerrant, Dig. Dis. Sci. 53, 2687 (2008) https://doi.org/10.1007/s10620-008-0215-0
  41. C. B. Newgard, Cell Metab. 15, 606 (2012) https://doi.org/10.1016/j.cmet.2012.01.024
  42. J. H. Cha, S. H. Bae, H. L. Kim, N. R. Park, E. S. Choi, E. S. Jung, J. Y. Choi, and S. K. Yoon, PloS one 8, e77899 (2013) https://doi.org/10.1371/journal.pone.0077899
  43. J. Fan, J. Ye, J. J. Kamphorst, T. Shlomi, C. B. Thompson, and J. D. Rabinowitz, Nature 510, 298 (2014) https://doi.org/10.1038/nature13236
  44. J. H. Lim, C. Luo, F. Vazquez, and P. Puigserver, Cancer Res. 74, 3535 (2014) https://doi.org/10.1158/0008-5472.CAN-13-2893-T