DOI QR코드

DOI QR Code

Selection of Small Synthetic Antimicrobial Peptides Inhibiting Xanthomonas citri subsp. citri Causing Citrus Canker

  • Choi, Jeahyuk (Department of Biotechnology, Yeungnam University) ;
  • Park, Euiho (Department of Biotechnology, Yeungnam University) ;
  • Lee, Se-Weon (International Technology Cooperation Center, Rural Development Administration) ;
  • Hyun, Jae-Wook (Citrus Research Station, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Baek, Kwang-Hyun (Department of Biotechnology, Yeungnam University)
  • Received : 2015.09.12
  • Accepted : 2016.08.25
  • Published : 2017.02.01

Abstract

Citrus canker disease decreases the fruit quality and yield significantly, furthermore, emerging of streptomycin-resistant pathogens threatens the citrus industry seriously because of a lack of proper control agents. Small synthetic antimicrobial peptides (AMPs) could be a promising alternative. Fourteen hexapeptides were selected by using positional scanning of synthetic peptide combinatorial libraries. Each hexapeptide showed different antimicrobial spectrum against Bacillus, Pseudomonas, Xanthomonas, and Candida species. Intriguingly, BHC10 showed bactericidal activity exclusively on Xanthomonas citri subsp. citri (Xcc), while BHC7 was none-active exclusively against two Pseudomonas spp. at concentration of $100{\mu}g/ml$ suggesting potential selectivity constrained in hexapeptide frame. Three hexapeptides, BHC02, 06 and 11, showed bactericidal activities against various Xcc strains at concentration of $10{\mu}g/ml$. When they were co-infiltrated with pathogens into citrus leaves the disease progress was suppressed significantly. Further study would be needed to confirm the actual disease control capacity of the selected hexapeptides.

Keywords

References

  1. Ahmad, A. A., Askora, A., Kawasaki, T., Fujie, M. and Yamada, T. 2014. The filamentous phage XacF1 causes loss of virulence in Xanthomonas axonopodis pv. citri, the causative agent of citrus canker disease. Front. Microbiol. 5:321.
  2. Amaral, A. M., Carvalho, S. A., Silva, L. F. C. and Machado, M. A. 2010. Reaction of genotypes of citrus species and varieties to Xanthomonas citri subsp. citri under greenhouse conditions. J. Plant Pathol. 92:519-524.
  3. Bajpai, V. K., Kang, S. C., Park, E., Jeon, W. T. and Baek, K. H. 2011. Diverse role of microbially bioconverted product of cabbage (Brassica oleracea) by Pseudomonas syringe pv. T1 on inhibiting Candida species. Food Chem. Toxicol. 49:403-407. https://doi.org/10.1016/j.fct.2010.11.015
  4. Behlau, F., Jones, J. B., Myers, M. E. and Graham, J. H. 2012. Monitoring for resistant populations of Xanthomonas citri subsp. citri and epiphytic bacteria on citrus trees treated with copper or streptomycin using a new semi-selective medium. Eur. J. Plant Pathol. 132:259-270. https://doi.org/10.1007/s10658-011-9870-7
  5. Blondelle, S. E. and Lohner, K. 2000. Combinatorial libraries: a tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55:74-87. https://doi.org/10.1002/1097-0282(2000)55:1<74::AID-BIP70>3.0.CO;2-S
  6. Chiou, C. S. and Jones, A. L. 1993. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175:732-740. https://doi.org/10.1128/jb.175.3.732-740.1993
  7. Choi, J., Baek, K. H. and Moon, E. 2014. Antimicrobial effects of a hexapetide KCM21 against Pseudomonas syringae pv. tomato DC3000 and Clavibacter michiganensis subsp. michiganensis. Plant Pathol. J. 30:245-253. https://doi.org/10.5423/PPJ.OA.02.2014.0011
  8. Choi, J. and Moon, E. 2009. Identification of novel bioactive hexapeptides against phytopathogenic bacteria through rapid screening of a synthetic combinatorial library. J. Microbiol. Biotechnol. 19:792-802. https://doi.org/10.4014/jmb.0809.497
  9. Gordon, Y. J., Romanowski, E. G. and McDermott, A. M. 2005. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr. Eye Res. 30:505-515. https://doi.org/10.1080/02713680590968637
  10. Han, H. S., Koh, Y. J., Hur, J. S. and Jung, J. S. 2004. Occurrence of the strA-strB streptomycin resistance genes in Pseudomonas species isolated from kiwifruit plants. J. Microbiol. 42:365-368.
  11. Hancock, R. E. 2001. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1:156-164. https://doi.org/10.1016/S1473-3099(01)00092-5
  12. Hong, S. Y., Oh, J. E., Kwon, M., Choi, M. J., Lee, J. H., Lee, B. L., Moon, H. M. and Lee, K. H. 1998. Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob. Agents Chemother. 42:2534-2541.
  13. Hyun, J. W., Kim, H. J., Yi, P. H., Hwang, R. Y. and Park, E. W. 2012. Mode of action of streptomycin resistance in the citrus canker pathogen (Xanthomonas smithii subsp. citri) in Jeju Island. Plant Pathol. J. 28:207-211. https://doi.org/10.5423/PPJ.2012.28.2.207
  14. Koh, Y. J., Kim, G. H., Koh, H. S., Lee, Y. S., Kim, S. C. and Jung, J. S. 2012. Occurrence of a new type of Pseudomonas syringae pv. actinidiae strain of bacterial canker on kiwifruit in Korea. Plant Pathol. J. 28:423-427. https://doi.org/10.5423/PPJ.NT.05.2012.0061
  15. Levin, B. R., Perrot, V. and Walker, N. 2000. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154:985-997.
  16. Li, J. and Wang, N. 2011. The wxacO gene of Xanthomonas citri ssp. citri encodes a protein with a role in lipopolysaccharide biosynthesis, biofilm formation, stress tolerance and virulence. Mol. Plant Pathol. 12:381-396. https://doi.org/10.1111/j.1364-3703.2010.00681.x
  17. Liu, Z., Brady, A., Young, A., Rasimick, B., Chen, K., Zhou, C. and Kallenbach, N. R. 2007. Length effects in antimicrobial peptides of the $(RW)_n$ series. Antimicrob. Agents Chemother. 51:597-603. https://doi.org/10.1128/AAC.00828-06
  18. Loper, J. E., Henkels, M. D., Roberts, R. G., Grove, G. G., Willet, M. J. and Smith, T. J. 1991. Evaluation of streptomycin, oxytetracycline, and copper resistance of Erwinia amylovora isolated from pear orchards in Washington State. Plant Dis. 75:287-290. https://doi.org/10.1094/PD-75-0287
  19. Maroti, G., Kereszt, A., Kondorosi, E. and Mergaert, P. 2011. Natural roles of antimicrobial peptides in microbes, plants and animals. Res. Microbiol. 162:363-374. https://doi.org/10.1016/j.resmic.2011.02.005
  20. Moller, W. J., Schroth, M. N. and Thomson, S. V. 1981. The scenario of fire blight and streptomycin resistance. Plant Dis. 65:563-568. https://doi.org/10.1094/PD-65-563
  21. Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237. https://doi.org/10.1002/cbdv.200890111
  22. Sharma, A., Bajpai, V. K. and Baek, K. H. 2013. Determination of antibacterial mode of action of Allium sativum essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters. J. Food Saf. 33:197-208. https://doi.org/10.1111/jfs.12040
  23. Stockwell, V. O. and Duffy, B. 2012. Use of antibiotics in plant agriculture. Rev. Sci. Tech. 31:199-210. https://doi.org/10.20506/rst.31.1.2104
  24. Strom, M. B., Haug, B. E., Skar, M. L., Stensen, W., Stiberg, T. and Svendsen, J. S. 2003. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 46:1567-1570. https://doi.org/10.1021/jm0340039
  25. Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34 Suppl 3:S107-S110. https://doi.org/10.1086/340247
  26. Zhang, L., Parente, J., Harris, S. M., Woods, D. E., Hancock, R. E. and Falla, T. J. 2005. Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49:2921-2927. https://doi.org/10.1128/AAC.49.7.2921-2927.2005

Cited by

  1. Tryptophan-Rich and Proline-Rich Antimicrobial Peptides vol.23, pp.4, 2018, https://doi.org/10.3390/molecules23040815