DOI QR코드

DOI QR Code

A perspective of chemical treatment for cyanobacteria control toward sustainable freshwater development

  • Huh, Jae-Hoon (Korea Institute of Limestone and Advanced Materials (KILAM)) ;
  • Ahn, Ji-Whan (Carbon Resource Recycling Appropriate Technology Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • Received : 2016.12.21
  • Accepted : 2017.02.14
  • Published : 2017.03.31

Abstract

One of the most threatening consequences of eutrophic freshwater reservoirs is algal blooming which typically occur after the long a mega drought or/and irregular rainfall under influence of climate change. The long-term experiences of chemical treatment are known as a most practical effort to reduce health concerns from human exposure of harmful cyanobacteria as well as to preserve ultimate freshwater resources. Even though these conventional chemical treatment methods do not completely solve the algal residue problem in water treatment plant or directly in the water bodies, they still have big advantages as fast and efficient removal process of cyanobacteria due to cheaper, easier to manage. This review summarizes their chemical treatment scenarios of the representative coagulants, pre-oxidants and algaecides composed to chemical compounds which immediately may help to manage severe cyanobacteria blooms in the summer seasons.

Keywords

References

  1. Lashof DA, Ahuja DR. Relative contributions of greenhouse gas emissions to global warming. Nature 1990;344:529-531. https://doi.org/10.1038/344529a0
  2. Ramanathan V, Feng Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009;43:37-50. https://doi.org/10.1016/j.atmosenv.2008.09.063
  3. Park JY, Park GA, Kim SJ. Assessment of future climate change impact on water quality of Chungju Lake, South Korea, using WASP coupled with SWAT. J. Am. Water Resour. As. (JAWRA). 2000;49:1225-1238.
  4. Scheren PAGM, Zanting HA, Lemmens AMC. Estimation of water pollution sources in Lake Victoria, East Africa: Application and elaboration of the rapid assessment methodology. J. Environ. Manage. 2000;58:235-248. https://doi.org/10.1006/jema.2000.0322
  5. Stein PL. The great Sydney water crisis of 1998. Water Air Soil Poll. 2000;123:419-436. https://doi.org/10.1023/A:1005255202854
  6. Pimentel D, Berger B, Filiberto D, et al. Water resources: Agricultural and environmental issues. BioScience 2004;54:909-918. https://doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
  7. Piao S, Ciais P, Huang Y, et al. The impact of climate change on water resources and agriculture in China. Nature 2010;467:43-51. https://doi.org/10.1038/nature09364
  8. Frisvold GB, Konyar K. Climate change mitigation policies: Implications for agriculture and water resources. J. Contemp. Water Res. Educ. 2013;151:27-42. https://doi.org/10.1111/j.1936-704X.2013.03149.x
  9. Jury WA, Vaux H. The role of science in solving the world's emerging water problems. PNAS 2005;102:15715-15720. https://doi.org/10.1073/pnas.0506467102
  10. Conley DJ, Paerl HW, Howarth RW, et al. Controlling eutrophication: Nitrogen and phosphorus. Science 2009;323:1014-1015. https://doi.org/10.1126/science.1167755
  11. Kim B, Park J-H, Hwang G, Jun M-S, Choi K. Eutrophication of reservoirs in South Korea. Limnology 2001;2:223-229. https://doi.org/10.1007/s10201-001-8040-6
  12. Tekile A, Kim I, Kim J. Mini-review on river eutrophication and bottom improvement techniques, with special emphasis on the Nakdong River. J. Environ. Sci. 2015;30:113-121. https://doi.org/10.1016/j.jes.2014.10.014
  13. Srivastava A, Singh S, Ahn C-Y, Oh H-M, Asthana RK. Monitoring approaches for a toxic cyanobacterial bloom. Environ. Sci. Technol. 2013;47:8999-9013. https://doi.org/10.1021/es401245k
  14. Oh H-M, Lee SJ, Kim J-H, Kim H-S, Yoon BD. Seasonal variation and indirect monitoring of Microcystin concentrations in Daechung Reservoir, Korea. Appl. Environ. Microb. 2001;67: 1484-1489. https://doi.org/10.1128/AEM.67.4.1484-1489.2001
  15. Smith VH, Tilman GD, Nekola JC. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999;100:179-196. https://doi.org/10.1016/S0269-7491(99)00091-3
  16. Verschuren D, Laird KR, Cumming BF. Rainfall and drought in equatorial East Africa during the past 1,100 years. Nature 2000;403:410-414. https://doi.org/10.1038/35000179
  17. Park J-S, Kang H-S, Lee YS, Kim M-K. Changes in the extreme daily rainfall in South Korea. Int. J. Climatol. 2011;31:2290-2299. https://doi.org/10.1002/joc.2236
  18. Chang H, Kwon W-T. Spatial variations of summer precipitation trends in South Korea, 1973-2005. Environ. Res. Lett. 2000;2:045012(9 page).
  19. Shen Q, Zhu J, Cheng L, Zhang J, Zhang Z, Xu X. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination 2011;271:236-240. https://doi.org/10.1016/j.desal.2010.12.039
  20. Lopez CB, Jewett EB, Dortch Q, Walton BT, Hudnell HK. Scientific assessment of freshwater harmful algal blooms. Interagency working group on harmful algal blooms, hypoxia, and human health of the joint subcommittee on ocean science and technology. Washington, D.C.; 2008.
  21. Dawson RM. The toxicology of Microcystins. Toxicon 1998;36: 953-962. https://doi.org/10.1016/S0041-0101(97)00102-5
  22. Gehringer MM, Adler L, Roberts AA, et al. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp. ISME J. 2012;6:1834-1847. https://doi.org/10.1038/ismej.2012.25
  23. Andrinolo D, Michea LF, Lagos N. Toxic effects, pharmacokinetics and clearance of saxitoxin, a component of paralytic shellfish poison (PSP), in cats. Toxicon 1999;37:447-464. https://doi.org/10.1016/S0041-0101(98)00173-1
  24. Puschner B, Hoff B, Tor ER. Diagonosis of anatoxin-a poisoning in dogs from North America. J. Vet. Diagn. Invest. 2008;20:89-92. https://doi.org/10.1177/104063870802000119
  25. Hoff-Risseti C, Dorr FA, Schaker PDC, Pinto E, Werner VR, Fiorem MF. Cylindrospermopsin and saxitoxin synthetase genes in cylindrospermopsis raciborskii strains from Brazilian freshwater. PLOS ONE 1998;8:e74238.
  26. Nelson SK, Knoernschild KL, Robinson FG, Schuster GS. Lipopolysaccharide affinity for titanium implant biomaterials. Toxicon 1998;36:953-962. https://doi.org/10.1016/S0041-0101(97)00102-5
  27. Cardellina JH, Marner F-J, Moore RE. Seaweed dermatitis: Structure of lyngbyatoxin A. Science 1979;204:193-195. https://doi.org/10.1126/science.107586
  28. Jiang L, Eriksson J, Lage S, et al. Diatoms: A novel source for the Neurotoxin BMAA in aquatic environments. PLOS ONE 2014;9:e84578. https://doi.org/10.1371/journal.pone.0084578
  29. Hallegraeff GM. A review of harmful algal blooms and their apparent global increase. Phycologia 1993;32:79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  30. Davis TW, Koch F, Marcoval MA, Wilhelm SW, Gobler CJ. Mesozooplankton and microzooplankton grazing during Cyanobacterial blooms in the western basin of Lake Erie. Harmful Algae 2012;15:26-35. https://doi.org/10.1016/j.hal.2011.11.002
  31. Kim S-G, Rhee S-K, Ahn C-Y, et al. Determination of cyanobacterial diversity during algal blooms in Daechung Reservoir, Korea, on the basis of cpcBA intergenic spacer region analysis. Appl. Environ. Microb. 2006;72:3252-3258. https://doi.org/10.1128/AEM.72.5.3252-3258.2006
  32. Hitzfeld BC, Hoger SJ, Dietrich DR. Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environ. Health Persp. 2000;108:113-122. https://doi.org/10.1289/ehp.00108s1113
  33. Blaha L, Babica P, Marsalek B. Toxins produced in Cyanobacterial water blooms-toxicity and risks. Interdiscipl. Toxicol. 2009;2:36-41.
  34. Apeldoorn ME, Egmond HP, Speijers GJA, Bakker GJI. Toxins of cyanobacteria. Mol. Nutr. Food Res. 2007;51:7-60. https://doi.org/10.1002/mnfr.200600185
  35. Cheung MY, Liang S, Lee J. Toxin-producing Cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J. Microbiol. 2013;51:1-10. https://doi.org/10.1007/s12275-013-2549-3
  36. Ho JC, Michalak AM. Challenges in tracking harmful algal blooms: A synthesis of evidence from Lake Erie. J. Great Lakes Res. 2015;41:317-325. https://doi.org/10.1016/j.jglr.2015.01.001
  37. Paerl HW, Fulton RS, Moisander PH, Dyble J. Harmful freshwater algal blooms, with an emphasis on Cyanobacteria. Sci. World J. 2001;1:76-113. https://doi.org/10.1100/tsw.2001.138
  38. Mariani MA, Padedda BM, Kastovsky J, et al. Effects of trophic status on microcystin production and the dominance of cyanobacteria in the phytoplankton assemblage of Mediterranean reservoirs. Sci. Rep. 2015;5:17964(16 page).
  39. Chorus I, Bartram J. Toxic Cyanobacteria in water: A guide for their public health consequences, monitoring and management. E&FN Spon London, UK; 1999.
  40. Coltelli P, Barsanti L, Evangelista V, Frassanito AM, Gualtieri P. Water monitoring: Automated and real time identification and classification of algae using digital microscopy. Environ. Sci. Proc. Imp. 2014;16:2656-2665. https://doi.org/10.1039/C4EM00451E
  41. Dybas CL. Harmful algal Blooms: Biosensors provide new ways of detecting and monitoring growing threat in coastal waters. BioScience 2003;53:918-923. https://doi.org/10.1641/0006-3568(2003)053[0918:HABBPN]2.0.CO;2
  42. Reichwaldt ES, Ghadouani A. Effects of rainfall patterns on toxic Cyanobacterial blooms in a changing climate: Between simplistic scenarios and complex dynamics. Water Res. 2012;46:1372-1393. https://doi.org/10.1016/j.watres.2011.11.052
  43. Hoeger SJ, Hitzfeld BC, Dietrich ER. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants. Toxicol. Appl. Pharm. 2005;203:231-242. https://doi.org/10.1016/j.taap.2004.04.015
  44. Ebeling JM, Sibrell PL, Ogden SR, Summerfelt ST. Evaluation of chemical coagulation-flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacult. Eng. 2003;29:23-42. https://doi.org/10.1016/S0144-8609(03)00029-3
  45. Junli H, Li W, Nenqi R, Li LX, Fun SR, Guanle Y. Disinfection effect of chlorine dioxide on viruses, algae and animal planktons in water. Water Res. 1997;31:455-460. https://doi.org/10.1016/S0043-1354(96)00276-X
  46. Xie P, Ma J, Fang J, et al. Comparison of permanganate preoxidation and preozonation on algae containing water: Cell integrity, characteristics, and chlorinated disinfection byproduct formation. Environ. Sci. Technol. 2013;47:14051-14061. https://doi.org/10.1021/es4027024
  47. Chen J-J, Yeh H-H, Tseng I-C. Potassium permanganate as an alternative preoxidant for enhancing algal coagulation-pilot and bench scale studies. Environ. Technol. 2008;29:721-729. https://doi.org/10.1080/09593330801984712
  48. Chen J-J, Yeh H-H. The mechanisms of potassium permanganate on algae removal. Water Res. 2005;39:4420-4428. https://doi.org/10.1016/j.watres.2005.08.032
  49. Shen Q, Zhu J, Cheng L, Zhang J, Zhang Z, Xu X. Enhanced algae removal by drinking water treatment of chlorination coupled with coagulation. Desalination 2011;271:236-240. https://doi.org/10.1016/j.desal.2010.12.039
  50. Plummer JD, Edzwald JK. Effect of ozone on algae as precursors for trihalomethane and haloacetic acid production. Envion. Sci. Technol. 2001;35:3661-3668. https://doi.org/10.1021/es0106570
  51. Moore GT, Kellerman KF. A method of destroying or preventing the growth of algae and certain pathogenic bacteria in water supplies. Bulletin 64:15-44, Bureau of Plant Industry, U.S. Department of Agriculture; 1904.
  52. Nichols MS, Henkel T, Mcnaul D. Copper in lake muds from lakes of the Madison area. Trans. Wis. Acad. Sci. 1946;38:333-350.
  53. Hasler AD. Antibiotic aspects of copper treatment of lakes. Trans. Wis. Acad. Sci. Arts Lett. 1947;39:97-103.
  54. Kenneth MM, Harold LC. The biological effect of copper sulphate treatment on lake ecology. Trans. Wis. Acad. Sci. Arts Lett. 1952;41:177-187.
  55. Elder JF, Horne AJ. Copper cycles and $CuSO_4$ algicidal capacity in two California Lakes. Envion. Manag. 1978;2:17-30. https://doi.org/10.1007/BF01866443
  56. Song L, Marsh TL, Voice TC, Long DT. Loss of seasonal variability in a Lake resulting from copper sulfate algaecide treatment. Phys. Chem. Earth 2011;36:430-435. https://doi.org/10.1016/j.pce.2010.04.016
  57. Jeune A-HL, Charpin M, Deluchat V, et al. Effect of copper sulphate treatment on natural phytoplanktonic communities. Aquat. Toxicol. 2006;80:267-280. https://doi.org/10.1016/j.aquatox.2006.09.004
  58. Beaulieu SE, Sengco MR, Anderson DM. Using clay to control harmful algal blooms: Deposition and resuspension of clay/algal flocs. Harmful Algae 2005;4:123-138. https://doi.org/10.1016/j.hal.2003.12.008
  59. Han MY, Kim W. A theoretical consideration of algae removal with clays. Microchem. J. 2001;68:157-161. https://doi.org/10.1016/S0026-265X(00)00142-9
  60. Guenther M, Bozelli R. Factors influencing algae-clay aggregation. Hydrobiologia 2004;523:217-223. https://doi.org/10.1023/B:HYDR.0000033127.05034.32
  61. Sengco MR, Anderson DM. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 2004;51:169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  62. Park C, Kang M. Impact assessment of turbidity water caused clays on algae growth. J. Eng. Geol. 2006;16:403-409.
  63. Gaudette HE, Eades JL, Grim RE. The nature of illite. Clays Clay Miner. 1964;13:33-48. https://doi.org/10.1346/CCMN.1964.0130105
  64. Hunziker JC, Frey M, Clauer N, et al. The evolution of illite to muscovite: Mineralogical and isotopic data from the Glarus Alps, Switzerland. Contrib. Mineral. Petr. 1986;92:157-180. https://doi.org/10.1007/BF00375291
  65. Zhou CH, Keeling J. Fundamental and applied research on clay minerals: From climate and environment to nanotechnology. Appl. Clay Sci. 2013;74:3-9. https://doi.org/10.1016/j.clay.2013.02.013
  66. Miao C, Tang Y, Zhang H, Wu Z, Wang X. Harmful algae blooms removal from fresh water with modified vermiculite. Environ. Technol. 2014;35:340-346. https://doi.org/10.1080/09593330.2013.828091
  67. Williams RB. Bentonite, kaolin and selected clay minerals. Environ. Health Criteria 2005;15:1-196.
  68. Stauber JL. Toxicity testing of modified clay leachates using freshwater organisms. CSIRO Center for Advanced Analytical Chemistry Energy Technology, Report No: ET/IR267R; March 2000.
  69. Lewis MA, Dantin DD, Walker CC, Kurtz JC, Greene RM. Toxicity of clay flocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish. Harmful Algae 2003;2:235-246. https://doi.org/10.1016/S1568-9883(03)00041-6
  70. Gregory J, Duan J. Hydrolyzing metal salts as coagulants. Pure Appl. Chem. 2001;73:2017-2026. https://doi.org/10.1351/pac200173122017
  71. Godward MBE. The iron alum acetocarmine method for algae. Nature 1948;161:203-203.
  72. Dawah A, Soliman A, Abomohra AE-F, Battah M, Anees D. Influence of alum on Cyanobacterial blooms and water quality of earthen fish ponds. Environ. Sci. Pollut. Res. 2015;22: 16502-16513. https://doi.org/10.1007/s11356-015-4826-7
  73. Wyatt NB. Gloe LM, Brady PV, et al. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol. Bioeng. 2012;109:493-501. https://doi.org/10.1002/bit.23319
  74. Chen L, Li P, Liu Z, Jiao Q. The released polysaccharide of the cyanobacterium Aphanothece halophytica inhibits flocculation of the alga with ferric chloride. J. Appl. Phycol. 2009;21:327-331. https://doi.org/10.1007/s10811-008-9371-z
  75. Kimura M, Matsui Y, Kondo K, Ishikawa TB, Matsushita T, Shirasaki N. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants. Water Res. 2013;47:2075-2084. https://doi.org/10.1016/j.watres.2013.01.037
  76. Niquette P, Monette F, Azzouz A, Hausler R. Impacts of substituting aluminum-based coagulants in drinking water treatment. Water Qual. Res. J. Canada 2004;39:303-310. https://doi.org/10.2166/wqrj.2004.041
  77. Campbell A, Hamai D, Bondy SC. Differential toxicity of aluminum salts in human cell lines of neural origin: Implications for neurodegeneration. NeuroToxicology 2001;22:63-71. https://doi.org/10.1016/S0161-813X(00)00007-3
  78. Edwards M, Scardina P, McNeill LS. Enhanced coagulation impacts on water treatment plant infrastructure. American Water Works Association (AWWA) Research Foundation, Denver, CO; 2004.
  79. Huh JH, Oh EJ, Cho JH. Corrosion characteristics of electrochemically prepared doped polyaniline films in acidic chloride environments. Syn. Met. 2005;153:13-16. https://doi.org/10.1016/j.synthmet.2005.07.222
  80. Alfantazi AM, Ahmed TM, Tromans D. Corrosion behavior of copper alloys in chloride media. Mater. Design 2009;30: 2425-2430. https://doi.org/10.1016/j.matdes.2008.10.015
  81. Miyazato S-I, Otsuki N. Steel corrosion induced by chloride or carbonation in mortar with bending cracks or joints. J. Adv. Concr. Technol. 2010;8:135-144. https://doi.org/10.3151/jact.8.135
  82. Slavickova K, Grunwald A, St'astny B. Monitoring of the corrosion of pipes used for the drinking water treatment and supply. Civil Eng. Archit. 2013;1:61-65.
  83. Prepas EE, Pinel-Alloul B, Chambers PA, et al. Lime treatment and its effects on the chemistry and biota of hardwater eutrophic lakes. Freshwater Biol. 2001;46:1049-1060. https://doi.org/10.1046/j.1365-2427.2001.00788.x
  84. Prepas EE, Murphy TP, Crosby JM, et al. Reduction of phosphorus and chlorophyll a concentrations following $CaCO_3$ and $Ca(OH)_2$ additions to hypereutrophic Figure Eight Lake, Alberta. Envion. Sci. Technol. 1990;24:1252-1258. https://doi.org/10.1021/es00078a014
  85. Huh J-H, Choi Y-H, Ahn JW. Limestone particles for algae treatment (in Korean). Ceramist 2015;18:5-13.
  86. Kenefick SL, Hrudey SE, Peterson HG, Prepas EE. Toxin release from Microcystis aeruginosa after chemical treatment. Water Sci. Technol. 1993;27:433-440. https://doi.org/10.2166/wst.1993.0387
  87. Dittrich M, Sibler S. Calcium carbonate precipitation by cyanobacterial polysaccharides. Geol. Soc. London Spec. Publ. 2010;336:51-63. https://doi.org/10.1144/SP336.4
  88. Alvarenga RAFD, Galindro BM, Helpa CDF, Soares SR. The recycling of oyster shells: An environmental analysis using life cycle assessment. J. Environ. Manag. 2012;106:102-109. https://doi.org/10.1016/j.jenvman.2012.04.017
  89. Huh J-H, Choi Y-H, Lee H-J, et al. The use of oyster powders for water quality improvement of lakes by algal blooms removal. J. Korean Ceram. Soc. 2016;53:1-6. https://doi.org/10.4191/kcers.2016.53.1.1
  90. Huh J-H, Choi Y-H, Ramakrishna C, Cheong SH, Ahn J-W. Use of calcined oyster shell powder as a $CO_2$ adsorbent in algae-containing water. J. Korean Ceram. Soc. 2016;53:429-434. https://doi.org/10.4191/kcers.2016.53.4.429
  91. Brady PV, Pohl PI, Hewson JC. A coordination chemistry model of algal autoflocculation. Algal Res. 2014;5:226-230. https://doi.org/10.1016/j.algal.2014.02.004
  92. Jancula D, Marsalek B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 2011;85:1415-1422. https://doi.org/10.1016/j.chemosphere.2011.08.036
  93. Ghernaout B, Ghernaout D, Saiba A. Algae and Cyanotoxins removal by coagulation/flocculation: A review. Desalin. Water Treat. 2010;20:133-143. https://doi.org/10.5004/dwt.2010.1202

Cited by

  1. Control of Algal Blooms in Eutrophic Water Using Porous Dolomite Granules vol.54, pp.2, 2017, https://doi.org/10.4191/kcers.2017.54.2.05
  2. Oxidation of Microcystins by Permanganate: pH and Temperature-Dependent Kinetics, Effect of DOM Characteristics, and Oxidation Mechanism Revisited vol.52, pp.12, 2017, https://doi.org/10.1021/acs.est.8b01447
  3. Chemistry of persulfates for the oxidation of organic contaminants in water vol.9, pp.6, 2017, https://doi.org/10.12989/mwt.2018.9.6.405
  4. Impact of climate change on rawa river water source in lake Lindu watershed, Central Sulawesi, Indonesia vol.276, pp.None, 2019, https://doi.org/10.1051/matecconf/201927604003
  5. Modifying effects of leaf litter extracts from invasive versus native tree species on copper-induced responses in Lemna minor vol.8, pp.None, 2017, https://doi.org/10.7717/peerj.9444
  6. Estrogenic Hormones in São Paulo Waters (Brazil) and Their Relationship with Environmental Variables and Sinapis alba Phytotoxicity vol.231, pp.4, 2020, https://doi.org/10.1007/s11270-020-04477-2
  7. Seaweed Essential Oils as a New Source of Bioactive Compounds for Cyanobacteria Growth Control: Innovative Ecological Biocontrol Approach vol.12, pp.8, 2017, https://doi.org/10.3390/toxins12080527
  8. Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa vol.28, pp.1, 2017, https://doi.org/10.1007/s11356-020-10439-2
  9. The “Bright Side” of Cyanobacteria: Revising the Nuisance Potential and Prospecting Innovative Biotechnology-Based Solutions to Integrate Water Management Programs vol.9, pp.21, 2017, https://doi.org/10.1021/acssuschemeng.1c00458
  10. Horseradish Essential Oil as a Promising Anti-Algal Product for Prevention of Phytoplankton Proliferation and Biofouling vol.10, pp.8, 2021, https://doi.org/10.3390/plants10081550