DOI QR코드

DOI QR Code

Investigations on aerosols transport over micro- and macro-scale settings of West Africa

  • Received : 2016.06.12
  • Accepted : 2016.10.17
  • Published : 2017.03.31

Abstract

The aerosol content dynamics in a virtual system were investigated. The outcome was extended to monitor the mean concentration diffusion of aerosols in a predefined macro and micro scale. The data set used were wind data set from the automatic weather station; satellite data set from Total Ozone Mapping Spectrometer aerosol index and multi-angle imaging spectroradiometer; ground data set from Aerosol robotic network. The maximum speed of the macro scale (West Africa) was less than 4.4 m/s. This low speed enables the pollutants to acquire maximum range of about 15 km. The heterogeneous nature of aerosols layer in the West African atmosphere creates strange transport pattern caused by multiple refractivity. It is believed that the multiple refractive concepts inhibit aerosol optical depth data retrieval. It was also discovered that the build-up of the purported strange transport pattern with time has enormous potential to influence higher degrees of climatic change in the long term. Even when the African Easterly Jet drives the aerosols layer at about 10 m/s, the interacting layers of aerosols are compelled to mitigate its speed to about 4.2 m/s (macro scale level) and boost its speed to 30 m/s on the micro scale level. Mean concentration diffusion of aerosols was higher in the micro scale than the macro scale level. The minimum aerosol content dynamics for non-decaying, logarithmic decay and exponential decay particulates dispersion is given as 4, 1.4 and 0 respectively.

Keywords

References

  1. Emetere ME, Akinyemi ML. Modeling of generic air pollution dispersion analysis from cement factory. Analele Universitatii din Oradea-Seria Geografie 2013;23:181-189.
  2. Emetere ME. Modeling of particulate radionuclide dispersion and deposition from a cement factory. Ann. Environ. Sci. 2013;7:71-77.
  3. Uno I, Wang Z, Chiba M, et al. Dust model intercomparison (DMIP) study over Asia: Overview. J. Geophys. Res. 2006;111: D12213. https://doi.org/10.1029/2005JD006575
  4. Sun WY, Yang KJS, Lin NH. Numerical simulations of Asian dust-aerosols and regional impacts on weather and climate- part II: PRCM-dust model simulation. Aerosol Air Qual. Res. 2013;13:1641-1654.
  5. Emetere ME, Akinyemi ML, Akinojo O. Parametric retrieval model for estimating aerosol size distribution via the AERONET, LAGOS station. Environ. Pollut. 2015;207:381-390. https://doi.org/10.1016/j.envpol.2015.09.047
  6. Sun WY. Conserved semi-lagrangian scheme applied to one-dimensional shallow water equations. Terr. Atmos. Ocean. Sci. 2007;18:777-803. https://doi.org/10.3319/TAO.2007.18.4.777(A)
  7. Habib G, Venkataraman C, Chiapello I, Ramachandran S, Boucher O, Reddy MS. Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: Relationship to regional meteorology and emissions. Atmos. Environ. 2006;40:1909-1921. https://doi.org/10.1016/j.atmosenv.2005.07.077
  8. Sun WY, Yang KJS, Lin NH. Numerical simulations of Asian dust-aerosols and regional impact on weather and climate - part I: Control case-PRCM simulation without dust-aerosols. Aerosol Air Qual. Res. 2013;13:1630-1640.
  9. Benson DA, Wheatcraft SW, Meerschaert MM. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000;36:1403-1412. https://doi.org/10.1029/2000WR900031
  10. Dudhia J, Gill D, Manning K, et al. PSU/NCAR mesoscale modeling system tutorial class notes and user's guide: MM5 modeling system version 3. Boulder, CO: NCAR; 2003.
  11. Cheng FY, Byun DW, Kim SB. Sensitivity study of the effects of land surface characteristics on meteorological simulations during the TexAQS2000 period in the Houston-Galveston area. In: 13th PSU/NCAR Mesoscale Model Users' Workshop; 10-11 June; Boulder, CO; 2003.
  12. Doraiswamy P, Hoegrefe C, Hao W, Civerelo K, Ku JY, Sistla G. A retrospective com-parison of model based forecasted PM2.5 concentrations with measurements. J. Air Waste Manage. Assoc. 2010;60:1293-1308. https://doi.org/10.3155/1047-3289.60.11.1293
  13. Vladutescu DV, Wu Y, Gross B, Moshary F, Ahmed S. Optical properties of aerosols and their sensitivity to relative humidity and size distribution in the New York City urban-coastal area. EARSeL eProceedings 2012;11:52-63.
  14. Emetere ME, Akinyemi ML, Akin-Ojo O. Aerosol optical depth trends over different regions of Nigeria: Thirteen years analysis. Mod. Appl. Sci. 2015;9:267-279.
  15. Madala S, Satyanarayana A, Prasad V. Micro-scale dispersion of air pollutants over an urban setup in a coastal region. Open J. Air Pollut. 2012;2:51-58.
  16. Cazacioc LV, Cazacioc A. Impact of the macro-scale atmospheric circulation on snow cover duration in Romania. Croat. Meteorol. J. 2005;40:495-498.
  17. Gbadebo AM, Amos AJ. Assessment of radionuclide pollutants in bedrocks and soil ewekoro cement factory, Southwest Nigeria. Asian J. Appl. Sci. 2010;2010:1-10.
  18. Mayya YS, Tripathi SN, Khan A. Boundary conditions and growth of mean charges for radioactive aerosol particles near absorbing surfaces. Aerosol Sci. 2002;33:781-795. https://doi.org/10.1016/S0021-8502(01)00213-0
  19. Johar RS, Scholz PD. The effect of aerosol temperature and particle number density on light scattering. Atmos. Environ. 1970;4:633-637. https://doi.org/10.1016/0004-6981(70)90036-3
  20. Lead C. Aerosols, their direct and indirect effects [Internet]. c2015 [cited 12 December 2015]. Available from: www.grida.no/climate/ipcc_tar/wg1/pdf/tar-05.pdf.
  21. McKibbin R. Mathematical modeling of aerosol transport and deposition: Analytic formula for fast computation. In: Proc. iEMSs 4th Biennial Meeting - Int. Congress on Environmental Modelling and Software: Integrating sciences and information technology for environmental assessment and decision maing. iEMSs; 2008. p. 1420-1430.
  22. Massabo M, Catania F, Paladino O. A new method for laboratory estimation of the transverse dispersion coefficient. Ground Water 2007;45:339-347. https://doi.org/10.1111/j.1745-6584.2007.00301.x
  23. Egan Tony. Conversion from constant flow system to variable flow. 2015 armstrongfluidtechnology.com/.../94-21_conversionfrom constanttovaria. (retrieved 12th December, 2015)
  24. de Gouw JA, Warneke C, Stohl A, et al. Volatile organic compounds composition of merged and aged forest fire plumes from Alaska and western Canada. J. Geophys. Res. 2006;111:D10303.
  25. Lovejoy ER, Curtius J, Froyd KD. Atmospheric ion-induced nucleation of sulphuric acid and water. J. Geophys. Res. 2004;109:D08204.
  26. Yermakov AN, Larin IK, Ugarova AA, Purmal AP. Iron Catalyst of $SO_2$ oxidation in the atmosphere. Kinet. Catal. 2003;44:476-489. https://doi.org/10.1023/A:1025181715142
  27. Pausata FSR, Gaetani M, Messori G, Kloster S, Dentener FJ. The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality. Atmos. Chem. Phys. 2015;15:1725-1743. https://doi.org/10.5194/acp-15-1725-2015
  28. Drewnick F, Hings SS, Alfarra MR, Prevot ASH, Borrmann S. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: Detection limits and ionizer background effects. Atmos. Meas. Tech. 2009;2:33-46. https://doi.org/10.5194/amt-2-33-2009
  29. Olaleye VF, Oluyemi EA, Akinyemiju OA. Environmental disamenities produced by particulate and gaseous emissions from Ewekoro cement kilns on some strata of aquatic and terrestrial ecosystems. J. Appl. Sci. 2005;5:428-436. https://doi.org/10.3923/jas.2005.428.436
  30. Akinyemi ML, Emetere ME, Akinwumi SA. Dynamics of wind strength and wind direction on air pollution dispersion. Asian J. Appl. Sci. 2016;4:422-429.
  31. Andres-Hernandez MD, Kartal D, Reichert L, et al. Peroxy radical observations over West Africa during AMMA 2006: Photochemical activity in the outflow of convective systems. Atmos. Chem. Phys. 2009;9:3681-3695. https://doi.org/10.5194/acp-9-3681-2009
  32. Emetere ME. A model for analyzing temperature profiles in pipe walls and fluids using mathematical experimentation. Adv. Mech. Eng. 2014;2014:490302.
  33. Rajeev K, RamanathanV, Meywerk J. Regional aerosol distribution and its long-range transport over the Indian Ocean. J. Geophys. Res. 2000;105:2029-2043. https://doi.org/10.1029/1999JD900414
  34. Vakkari V, Kerminen VM, Beukes JP, et al. Rapid changes in biomass burning aerosols by atmospheric oxidation. Geophys. Res. Lett. 2014;41:2644-2651. https://doi.org/10.1002/2014GL059396
  35. Valipour M. Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorol. Appl. 2016;23:91-100. https://doi.org/10.1002/met.1533

Cited by

  1. Dataset on aerosol loading, size and statistics over Nzerekore vol.20, pp.None, 2017, https://doi.org/10.1016/j.dib.2018.08.116
  2. Dataset on aerosol loading, size and statistics over Sanpedro vol.20, pp.None, 2017, https://doi.org/10.1016/j.dib.2018.08.117
  3. Breakup of nocturnal low-level stratiform clouds during the southern West African monsoon season vol.21, pp.3, 2017, https://doi.org/10.5194/acp-21-2027-2021
  4. Role of Atmospheric Aerosol Content on Atmospheric Corrosion of Metallic Materials vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/6637499
  5. Effect of the radiation balance on warming occurrence over West Africa vol.11, pp.None, 2017, https://doi.org/10.1016/j.sciaf.2021.e00700