DOI QR코드

DOI QR Code

Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda

  • Asumadu-Sarkodie, Samuel (Sustainable Environment and Energy Systems, Middle East Technical University, Northern Cyprus Campus) ;
  • Owusu, Phebe Asantewaa (Sustainable Environment and Energy Systems, Middle East Technical University, Northern Cyprus Campus)
  • Received : 2016.08.04
  • Accepted : 2016.11.03
  • Published : 2017.03.31

Abstract

The study makes an attempt to investigate the causal nexus between carbon dioxide emissions, GDP per capita, industrialization and population with an evidence from Rwanda by employing a time series data spanning from 1965 to 2011 using the autoregressive distributed lag model. Evidence from the study shows that carbon dioxide emissions, GDP per capita, industrialization and population are co-integrated and have a long-run equilibrium relationship. Evidence from the Granger-causality shows a unidirectional causality running from industrialization to GDP per capita, population to carbon dioxide emissions, population to GDP per capita and population to industrialization. Evidence from the long-run elasticities has policy implications for Rwanda; a 1% increase in GDP per capita will decrease carbon dioxide emissions by 1.45%, while a 1% increase in industrialization will increase carbon dioxide emissions by 1.64% in the long-run. Increasing economic growth in Rwanda will therefore reduce environmental pollution in the long-run which appears to support the validity of the environmental Kuznets curve hypothesis. However, industrialization leads to more emissions of carbon dioxide, which reduces environment, health and air quality. It is noteworthy that the Rwandan Government promotes sustainable industrialization, which improves the use of clean and environmentally sound raw materials, industrial process and technologies.

Keywords

References

  1. Owusu P, Asumadu-Sarkodie S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016;3:1167990.
  2. Asumadu-Sarkodie S, Owusu PA. The potential and economic viability of wind farms in Ghana. Energ. Source Part A. 2016;38:695-701. https://doi.org/10.1080/15567036.2015.1122680
  3. Asumadu-Sarkodie S, Owusu PA. The potential and economic viability of solar photovoltaic power in Ghana. Energ. Source Part A. 2016;38:709-716. https://doi.org/10.1080/15567036.2015.1122682
  4. Asumadu-Sarkodie S, Owusu P. A review of Ghana's energy sector national energy statistics and policy framework. Cogent Eng. 2016;3:1155274.
  5. Earth System Research Laboratory. The NOAA Annual Greenhouse Gas Index (AGGI). 2015.
  6. Owusu PA, Asumadu-Sarkodie S, Ameyo P. A review of Ghana's water resource management and the future prospect. Cogent Eng. 2016;3:1164275. https://doi.org/10.1080/23311916.2016.1164275
  7. Asumadu-Sarkodie S, Owusu PA. Feasibility of biomass heating system in Middle East Technical University, Northern Cyprus Campus. Cogent Eng. 2016;3:1134304.
  8. Asumadu-Sarkodie S, Sevinc C, Jayaweera HMPC. A hybrid solar photovoltaic-wind turbine-rankine cycle for electricity generation in Turkish Republic of Northern Cyprus. Cogent Eng. 2016;3:1180740.
  9. United Nations. Global sustainable development report. 2015.
  10. Al-Mulali U, Solarin SA, Ozturk I. Investigating the presence of the environmental Kuznets curve (EKC) hypothesis in Kenya: An autoregressive distributed lag (ARDL) approach. Nat. Hazards 2016;80:1729-1747. https://doi.org/10.1007/s11069-015-2050-x
  11. Apergis N, Ozturk I. Testing environmental Kuznets curve hypothesis in Asian countries. Ecol. Indic. 2015;52:16-22. https://doi.org/10.1016/j.ecolind.2014.11.026
  12. Balaguer J, Cantavella M. Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874-2011). Ecol. Indic. 2016;60:853-859. https://doi.org/10.1016/j.ecolind.2015.08.006
  13. Bilgili F, Kocak E, Bulut U. The dynamic impact of renewable energy consumption on $CO_2$ emissions: A revisited environmental Kuznets curve approach. Renew. Sust. Energ. Rev. 2016;54:838-845. https://doi.org/10.1016/j.rser.2015.10.080
  14. Hamit-Haggar M. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective. Energ. Econ. 2012;34:358-364. https://doi.org/10.1016/j.eneco.2011.06.005
  15. Kang YQ, Zhao T, Yang YY. Environmental Kuznets curve for $CO_2$ emissions in China: A spatial panel data approach. Ecol. Indic. 2016;63:231-239. https://doi.org/10.1016/j.ecolind.2015.12.011
  16. Lise W, Van Montfort K. Energy consumption and GDP in Turkey: Is there a co-integration relationship? Energ. Econ. 2007;29:1166-1178. https://doi.org/10.1016/j.eneco.2006.08.010
  17. Osabuohien ES, Efobi UR, Gitau CMW. Beyond the environmental Kuznets curve in Africa: Evidence from panel cointegration. J. Environ. Pol. 2014;16:517-538.
  18. Saidi K, Hammami S. Economic growth, energy consumption and carbone dioxide emissions: Recent evidence from panel data analysis for 58 countries. Qual. Quant. 2016;50:361-383. https://doi.org/10.1007/s11135-014-0153-1
  19. Seker F, Ertugrul HM, Cetin M. The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey. Renew. Sust. Energ. Rev. 2015;52:347-356. https://doi.org/10.1016/j.rser.2015.07.118
  20. Shahbaz M, Jam FA, Bibi S, Loganathan N. Multivariate Granger causality between $CO_2$ emissions, energy intensity and economic growth in Portugal: Evidence from cointegration and causality analysis. Technol. Econ. Dev. Eco. 2016;22:47-74. https://doi.org/10.3846/20294913.2014.989932
  21. Shahbaz M, Lean HH, Shabbir MS. Environmental Kuznets curve hypothesis in Pakistan: Cointegration and Granger causality. Renew. Sust. Energ. Rev. 2012;16:2947-2953. https://doi.org/10.1016/j.rser.2012.02.015
  22. Tutulmaz O. Environmental Kuznets curve time series application for Turkey: Why controversial results exist for similar models? Renew. Sust. Energ. Rev. 2015;50:73-81. https://doi.org/10.1016/j.rser.2015.04.184
  23. Ahmed K, Shahbaz M, Kyophilavong P. Revisiting the emissions-energy-trade nexus: Evidence from the newly industrializing countries. Environ. Sci. Pollut. Res. 2016;23: 7676-7691. https://doi.org/10.1007/s11356-015-6018-x
  24. Asumadu-Sarkodie S, Owusu PA. Carbon dioxide emissions, GDP, energy use and population growth: A multivariate and causality analysis for Ghana, 1971-2013. Environ. Sci. Pollut. Res. 2016;23:13508-13520. https://doi.org/10.1007/s11356-016-6511-x
  25. Asumadu-Sarkodie S, Owusu PA. Multivariate co-integration analysis of the Kaya factors in Ghana. Environ. Sci. Pollut. Res. 2016;23:9934-9943. https://doi.org/10.1007/s11356-016-6245-9
  26. Azhar Khan M, Zahir Khan M, Zaman K, Naz L. Global estimates of energy consumption and greenhouse gas emissions. Renew. Sust. Energ. Rev. 2014;29:336-344. https://doi.org/10.1016/j.rser.2013.08.091
  27. Chang CC. A multivariate causality test of carbon dioxide emissions, energy consumption and economic growth in China. Appl. Energ. 2010;87:3533-3537. https://doi.org/10.1016/j.apenergy.2010.05.004
  28. Fei L, Dong S, Xue L, Liang Q, Yang W. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energ. Policy 2011;39:568-574. https://doi.org/10.1016/j.enpol.2010.10.025
  29. Gul S, Zou X, Hassan CH, Azam M, Zaman K. Causal nexus between energy consumption and carbon dioxide emission for Malaysia using maximum entropy bootstrap approach. Environ. Sci. Pollut. Res. 2015;22:19773-19785. https://doi.org/10.1007/s11356-015-5185-0
  30. Saidi K, Mbarek MB. The impact of income, trade, urbanization, and financial development on $CO_2$ emissions in 19 emerging economies. Environ. Sci. Pollut. Res. 2016. doi:10.1007/s11356-016-6303-3.
  31. Soytas U, Sari R. Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member. Ecol. Econ. 2009;68:1667-1675. https://doi.org/10.1016/j.ecolecon.2007.06.014
  32. Cerdeira Bento JP, Moutinho V. $CO_2$ emissions, non-renewable and renewable electricity production, economic growth, and international trade in Italy. Renew. Sust. Energ. Rev. 2016;55: 142-155. https://doi.org/10.1016/j.rser.2015.10.151
  33. Menyah K, Wolde-Rufael Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energ. Econ. 2010;32:1374-1382. https://doi.org/10.1016/j.eneco.2010.08.002
  34. Mohiuddin O, Asumadu-Sarkodie S, Obaidullah M. The relationship between carbon dioxide emissions, energy consumption, and GDP: A recent evidence from Pakistan. Cogent. Eng. 2016;3:1210491.
  35. Asumadu-Sarkodie S, Owusu PA. Recent evidence of the relationship between carbon dioxide emissions, energy use, GDP and population in Ghana: A linear regression approach. Energ. Source. Part B. 2016. doi:10.1080/15567249.2016.1208304.
  36. Asumadu-Sarkodie S, Owusu PA. Forecasting Nigeria's energy-use by 2030, an econometric approach. Energ. Source. Part B. 2016;11:990-997. https://doi.org/10.1080/15567249.2016.1217287
  37. Asumadu-Sarkodie S, Owusu PA. Energy use, carbon dioxide emissions, GDP, industrialization, financial development, and population, a causal nexus in Sri Lanka: With a subsequent prediction of energy use using neural network. Energ. Source. Part B. 2016;11:889-899. https://doi.org/10.1080/15567249.2016.1217285
  38. Asumadu-Sarkodie S, Owusu PA. Carbon dioxide emission, electricity consumption, industrialization and economic growth nexus: The Beninese case. Energ. Source. Part B. 2016;11:1089-1096. https://doi.org/10.1080/15567249.2016.1217286
  39. Asumadu-Sarkodie S, Owusu PA. The causal nexus between energy use, carbon dioxide emissions and macroeconomic variables in Ghana. Energ. Source. Part B. 2016. doi:10.1080/15567249.2016.1225134.
  40. Asumadu-Sarkodie S, Owusu PA. The causal effect of carbon dioxide emissions, electricity consumption, economic growth and industrialization in Sierra Leone. Energ. Source. Part B. 2017;12:32-39. https://doi.org/10.1080/15567249.2016.1225135
  41. Asumadu-Sarkodie S, Owusu PA. The relationship between carbon dioxide emissions, electricity production and consumption in Ghana. Energ. Source. Part B. 2016.
  42. Asumadu-Sarkodie S, Owusu PA. A multivariate analysis of carbon dioxide emissions, electricity consumption, economic growth, financial development, industrialization and urbanization in Senegal. Energ. Source. Part B. 2017;12:77-84. https://doi.org/10.1080/15567249.2016.1227886
  43. Asumadu-Sarkodie S, Owusu PA. The relationship between carbon dioxide and agriculture in Ghana: A comparison of VECM and ARDL model. Environ. Sci. Pollut. Res. Int. 2016;23:10968-10982. https://doi.org/10.1007/s11356-016-6252-x
  44. Dodder RS, Kaplan PO, Elobeid A, Tokgoz S, Secchi S, Kurkalova LA. Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach. Energ. Econ. 2015;51:77-87. https://doi.org/10.1016/j.eneco.2015.06.008
  45. Li W, Ou Q, Chen Y. Decomposition of China's $CO_2$ emissions from agriculture utilizing an improved Kaya identity. Environ. Sci. Pollut. Res. Int. 2014;21:13000-13006. https://doi.org/10.1007/s11356-014-3250-8
  46. Zou XX, Li Y, Li K, et al. Greenhouse gas emissions from agricultural irrigation in China. Mitig. Adapt. Strat. Gl. 2015; 20:295-315. https://doi.org/10.1007/s11027-013-9492-9
  47. Asumadu-Sarkodie S, Rufangura P, Jayaweera HM, Owusu PA. Situational analysis of flood and drought in Rwanda. Int. J. Sci. Eng. Res. 2015;6:960-970.
  48. UNDP. Human Development Indicators. 2015.
  49. World Bank. World Development Indicators. 2014.
  50. Pesaran MH, Shin Y. An autoregressive distributed-lag modelling approach to cointegration analysis. Econ. Soc. Monogr. 1998;31:371-413.
  51. York R, Rosa EA, Dietz T. STIRPAT, IPAT and ImPACT: Analytic tools for unpacking the driving forces of environmental impacts. Ecol. Econ. 2003;46:351-365. https://doi.org/10.1016/S0921-8009(03)00188-5
  52. Long X, Naminse EY, Du J, Zhuang J. Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012. Renew. Sust. Energ. Rev. 2015;52:680-688. https://doi.org/10.1016/j.rser.2015.07.176
  53. UNDP. Human Development Report 2015. Work for Human Development. 2015.

Cited by

  1. The dependency analysis between energy consumption, sanitation, forest area, financial development, and greenhouse gas: a continent-wise comparison of lower middle-income countries vol.25, pp.24, 2018, https://doi.org/10.1007/s11356-018-2460-x
  2. Water Use Efficiency and Its Influencing Factors in China: Based on the Data Envelopment Analysis (DEA)—Tobit Model vol.10, pp.7, 2018, https://doi.org/10.3390/w10070832
  3. Causal correlation between energy use and carbon emissions in selected emerging economies—panel model approach pp.1614-7499, 2019, https://doi.org/10.1007/s11356-019-04140-2
  4. Does energy consumption follow asymmetric behavior? An assessment of Ghana's energy sector dynamics vol.651, pp.2, 2019, https://doi.org/10.1016/j.scitotenv.2018.10.147
  5. Memahami Pembangunan Ekonomi Provinsi Nusa Tenggara Timur Berbasis Energi Baru dan Terbarukan vol.22, pp.3, 2017, https://doi.org/10.14710/tataloka.22.3.428-436
  6. Does the Environmental Kuznets Curve for CO2 Emissions Exist for Rwanda? Evidence from Bootstrapped Rolling-Window Granger Causality Test vol.12, pp.20, 2017, https://doi.org/10.3390/su12208636
  7. Green Supply Chain Management, Environmental Degradation, and Energy: Evidence from Asian Countries vol.2021, pp.None, 2017, https://doi.org/10.1155/2021/5179964
  8. The Impact of Renewable Energy, Economic and Population Growth on CO2 Emissions in the East African Region: Evidence from Common Correlated Effect Means Group and Asymmetric Analysis vol.14, pp.2, 2017, https://doi.org/10.3390/en14020312
  9. Environmental Damage Theory Applicable to Kenya vol.11, pp.1, 2017, https://doi.org/10.13106/jbees.2021.vol11.no1.39
  10. Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels vol.147, pp.None, 2017, https://doi.org/10.1016/j.rser.2021.111233
  11. Research on coordination level and influencing factors spatial heterogeneity of China's urban CO2 emissions vol.75, pp.None, 2017, https://doi.org/10.1016/j.scs.2021.103323