DOI QR코드

DOI QR Code

Effect of Bismuth Excess on Piezoelectric and Dielectric Properties of BiFeO3-BaTiO3 Ceramics

Bi 과잉에 따른 BiFeO3-BaTiO3 세라믹스의 압전 및 유전특성

  • Lee, Jae Hong (School of Advanced Materials and Engineering, Changwon National University) ;
  • Lee, Myang Hwan (School of Advanced Materials and Engineering, Changwon National University) ;
  • Song, Tae Kwon (School of Advanced Materials and Engineering, Changwon National University) ;
  • Kim, Won-Jeong (Department of Physics, Changwon National University) ;
  • Sung, Yeon Soo (Department of Materials and Engineering, Technology (POSTECH)) ;
  • Kim, Myong-Ho (School of Advanced Materials and Engineering, Changwon National University)
  • 이재홍 (창원대학교 신소재공학부) ;
  • 이명환 (창원대학교 신소재공학부) ;
  • 송태권 (창원대학교 신소재공학부) ;
  • 김원정 (창원대학교 물리학과) ;
  • 성연수 (포항공과대학교 신소재공학과) ;
  • 김명호 (창원대학교 신소재공학부)
  • Received : 2016.11.28
  • Accepted : 2017.01.20
  • Published : 2017.03.27

Abstract

The effects of an excess of Bi on the piezoelectric and dielectric properties of $0.60Bi_{1+x}FeO_3-0.40BaTiO_3$ (x = 0, 0.01, 0.03, 0.05, 0.07) were investigated. The ceramics were processed through a conventional solid state reaction method and then quenched after sintering at different temperatures in the range of $980{\sim}1070^{\circ}C$. A single perovskite structure without any secondary phase was confirmed for all compositions and temperatures. It was found that excess Bi reduced the sintering temperatures, acted as a sintering aid and enhanced the properties in combination with quenching. Curie temperature ($T_C$) was found to slightly increase due to the presence of excess Bi; electrical properties were also improved by quenching. At x = 0.03 and $1030^{\circ}C$, remnant polarization ($2P_r$) was as high as $45.4{\mu}C/cm^2$ and strain at 40 kV/cm was up to 0.176 %.

Keywords

References

  1. B. Jaffe, R. S. Roth and S. Marzullo, J. Appl. Phys., 25, 809 (1954). https://doi.org/10.1063/1.1721741
  2. R. A. Malik, A. Hussain, A. Zaman, A. Maqbool, J. U. Rahman, T. K. Song, W. J. Kim and M. H. Kim, RSC Adv., 5, 96953 (2015). https://doi.org/10.1039/C5RA19107F
  3. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc., 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  4. N. N. Krainik, N. P. Khuchua, V. V. Zhdanova and V. A. Evseev, Sov. Phys. Solid State,. 8, 654 (1966).
  5. S. O. Leontsev and R. E. Eitel, J. Am. Ceram. Soc., 92, 2957 (2009). https://doi.org/10.1111/j.1551-2916.2009.03313.x
  6. C. I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Fromling, J. Rodel and W. Jo, J. Appl. Phys., 119, 154101 (2016). https://doi.org/10.1063/1.4946844
  7. A. K. Pradhan, Kai Zhang, D. Hunter, J. B. Dadson and G. B. Loutts, J. Appl Phys., 97, 093903 (2005). https://doi.org/10.1063/1.1881775
  8. Y. H. Lin, Q. Jiang, Y. Wang, C. W. Nan, L. Chen and J. Yu, Appl, Phys. Lett., 90, 172507 (2007). https://doi.org/10.1063/1.2732182
  9. Z. X. Cheng, A. H. Li, X. L. Wang, S. X. Dou, K. Ozawa, H. Kimura, S. J. Zhang and T. R. Shrout, J. Appl Phys., 103, 07E507 (2008). https://doi.org/10.1063/1.2839325
  10. P. Suresh, S. Srinath, J. Alloys Compd., 554, 271 (2013). https://doi.org/10.1016/j.jallcom.2012.11.129
  11. K. S. Nalwa and A. Garg, J. Appl. Phys., 103, 044101 (2008). https://doi.org/10.1063/1.2838483
  12. S. Karimi, I. M. Reaney, Y. Han, J. Pokorny and I. Sterianou, J. Mater. Sci., 44, 5102 (2009). https://doi.org/10.1007/s10853-009-3545-1
  13. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do and I. K. Jeong, Adv. Mater., 27, 6976 (2015). https://doi.org/10.1002/adma.201502424
  14. C. Zhou, H. Yang, Q. Zhou, Z. Cen, W. Li, C. Yuan and H. Wang, Ceram. Int., 39, 4307 (2013). https://doi.org/10.1016/j.ceramint.2012.11.012
  15. Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan and S. L. Yuan, Solid State Sci., 13, 2196 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.10.008
  16. Q. Wang, Z. Wang, X. Q. Liu and X. M. Chen, J. Am. Ceram. Soc., 95, 670 (2012). https://doi.org/10.1111/j.1551-2916.2011.04824.x
  17. C. A. Randall, R. E. Newnham, L. E. Cross "History of the First Ferroelectric Oxide, BaTiO3", Materials Research Institute, The Pennsylvania State University, USA, (2004).
  18. J. Chen and J. Cheng, J, Alloys Compd., 589, 115 (2014). https://doi.org/10.1016/j.jallcom.2013.11.169
  19. C. Zhou, H. Yang, Q. Zhou, G. Chen, W. Li and H. Wang, J. Mater. Sci., 24, 1685 (2013).
  20. H. Du, D. Liu, F. Tang, D. Zhu, W. Zhou and S. Qu, J. Am. Ceram Soc., 90, 2824(2007). https://doi.org/10.1111/j.1551-2916.2007.01846.x
  21. Q. Fan, C. Zhou, W. Zeng, L. Cao, C. Yuan, G. Rao and X. Li, J. Electroceram., 36, 1 (2016). https://doi.org/10.1007/s10832-015-0008-8