DOI QR코드

DOI QR Code

Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks

Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능

  • Bae, Ju-Won (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Koo, Bon-Ryul (Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology) ;
  • Lee, Tae-Kun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 배주원 (서울과학기술대학교 신소재공학과) ;
  • 구본율 (서울과학기술대학교 의공학-바이오소재 융합 협동과정 신소재공학프로그램) ;
  • 이태근 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2016.12.01
  • Accepted : 2017.01.20
  • Published : 2017.03.27

Abstract

Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.

Keywords

References

  1. A. R. van Doorn and M. J. Jongerius, Phys. Rev. B: Condens. Matter, 68, 155410 (2003). https://doi.org/10.1103/PhysRevB.68.155410
  2. J.-A. Jeong, J. Lee, H. Kim, H.-K. Kim and S.-I. Na, Sol. Energy Mater. Sol. Cells, 94, 1840 (2010). https://doi.org/10.1016/j.solmat.2010.05.052
  3. N. Ameera, A. Shuhaimi, N. Surani, M. Rusop, M. Hakim, M. H. Mamat, M. Mansor, M. Sobri, V. Ganesh, Y. Yusuf, Ceram. Int., 41, 913 (2015). https://doi.org/10.1016/j.ceramint.2014.09.009
  4. B.-R. Koo and H.-J. Ahn, J. Nanosci. Nanotechnol., 14, 9632 (2014). https://doi.org/10.1166/jnn.2014.10150
  5. B.-R. Koo and H.-J. Ahn, Korean J. Mater. Res., 24, 145, (2014). https://doi.org/10.3740/MRSK.2014.24.3.145
  6. H.-R. An, S.-T. Oh, C. Y. Kim, S.-H. Baek, I.-K. Park and H.-J. Ahn, J. Alloys Compd., 615, 728 (2014). https://doi.org/10.1016/j.jallcom.2014.06.168
  7. J.-M. Kim, B.-R. Koo, H.-J. Ahn and T.-K. Lee, Korean J. Mater. Res., 25, 125 (2015). https://doi.org/10.3740/MRSK.2015.25.3.125
  8. K. C. Heo, Y. Sohn and J. S. Gwag, Ceram. Int., 41, 617 (2015). https://doi.org/10.1016/j.ceramint.2014.08.111
  9. E. N. Dattoli and W. Lu, MRS Bulletin, 36, 782 (2011). https://doi.org/10.1557/mrs.2011.212
  10. P. K. Song, Y. Shigesato, M. Kamei and I. Yasui, Jpn. J. Appl. Phys., 38, 2921 (1999). https://doi.org/10.1143/JJAP.38.2921
  11. P. Manivannan and A. Subrahmanyam, J. Phys. D: Appl. Phys., 26, 1510 (1993). https://doi.org/10.1088/0022-3727/26/9/027
  12. R. M. Pasquarelli, D. S. Ginley and R. O'Hayre, Chem. Soc. Rev., 40, 5406 (2011). https://doi.org/10.1039/c1cs15065k
  13. Z. Chen, W. Li, R. Li, Y. Zhang, G. Xu and H. Cheng, Langmuir, 29, 13836 (2013). https://doi.org/10.1021/la4033282
  14. S. J. Kim, S. Yoon and H. J. Kim, Jpn. J. Appl. Phys., 53, 02BA02 (2014). https://doi.org/10.7567/JJAP.53.02BA02
  15. M. T. Kesim and C. Durucan, Thin Solid Films, 545, 56 (2013). https://doi.org/10.1016/j.tsf.2013.07.031
  16. M. Fang, A. Aristov, K. V. Rao, A. V. Kabashin and L. Belova, RSC Adv., 3, 19501 (2013). https://doi.org/10.1039/c3ra40487k
  17. B.-R. Koo and H.-J. Ahn, Ceram. Int., 42, 509 (2016). https://doi.org/10.1016/j.ceramint.2015.08.139
  18. M. Okuya, N. Ito and K. Shiozaki, Thin Solid Films, 515, 8656 (2007). https://doi.org/10.1016/j.tsf.2007.03.148
  19. M. Sawada and M. Higuchi, Thin Solid Films, 317, 157 (1998). https://doi.org/10.1016/S0040-6090(97)00513-0
  20. M. Higuchi, M. Sawada and Y. Kuronuma, J. Electrochem. Soc., 140, 1773 (1993). https://doi.org/10.1149/1.2221640
  21. L. L. Kazmerski, P. J. Ireland and P. Sheldon, J. Vac. Sci. Technol., 17, 1061 (1980). https://doi.org/10.1116/1.570591
  22. B.-R. Koo and H.-J. Ahn, Appl. Phys. Express, 7, 075002 (2014). https://doi.org/10.7567/APEX.7.075002
  23. Q. Xu, T. Song, W. Cui, Y. Liu, W. Xu, S.-T. Lee and B. Sun, ACS Appl. Mater. Interfaces, 7, 3272 (2015). https://doi.org/10.1021/am508006q
  24. J.-W. Bae, B.-R. Koo, H.-R. An and H.-J. Ahn, Ceram. Int., 41, 14668 (2015). https://doi.org/10.1016/j.ceramint.2015.07.189