DOI QR코드

DOI QR Code

Numerical Simulation for Transonic Wing-Body Configuration using CFD

CFD를 이용한 천음속 날개-동체 형상 해석

  • Received : 2016.11.08
  • Accepted : 2017.02.04
  • Published : 2017.03.01

Abstract

The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

본 연구에서는 전산유체역학의 특징에 대한 이해를 위해 천음속 날개-동체 주위의 유동장을 In-house 전산유체 코드로 해석하여 시험 결과와 비교하였다. 날개는 RAE 101 익형 단면을 가진 RAE Wing 'A'이며 동체는 축대칭 형상이다. In-house 코드는 비정렬 격자 기반의 압축성 Euler/Navier-Stokes 해석 코드이다. 격자에 대한 의존도, 난류 모형, 공간차분 기법, 점성/비점성의 영향을 시험 결과와 비교하여 살펴보았다. 난류 모형은 $k-{\omega}$ 모형, Spalart-Allmaras 모형, $k-{\omega}$ SST을 적용하였고, 공간차분 기법은 Jameson의 인공 점성를 도입한 중앙 차분 기법과 Roe의 풍상 차분 기법을 적용하였다. 대체적으로 시험 결과를 잘 예측하였으나, 압력분포 및 충격파의 위치가 난류 모형 및 공간 차분 기법에 따라 조금씩 다르게 예측되었으며, 정확한 충격파 위치를 예측하기 위해서는 난류 점성 효과가 고려되어야 함을 알 수 있다.

Keywords

References

  1. Jeremy, L. H., "Assessment of Computational-Fluid-Dynamics-Based Response Surface Database for Ares I Supersonic Ascent Aerodynamics," Journal of Spacecraft and Rockets, Vol. 49, No. 4, 2012, pp. 632-643. https://doi.org/10.2514/1.A32190
  2. Kang, K. T., and Lee, E., "Numerical Investigation of Jet Interaction for Missile with Continuous Type Side Jet Thruster," International Journal of Aeronautical and Space Science, Vol. 16, No. 2 , 2015, pp. 148-156. https://doi.org/10.5139/IJASS.2015.16.2.148
  3. AIAA CFD Drag Prediction Workshop, http://aiaa-dpw.larc.nasa.gov/
  4. EFD-CFD Comparison Workshop, KSAS 2015 fall conference
  5. Treadgold, D. A., Jones, A. F., and Wilson, K. H., "Pressure Distribution Measured in the RAE 8'$\times$6' Transonic Wind Turnnel on RAE Wing 'A' in Combination with an Axisymmetric Body at Mach Numbers of 0.4, 0.8, and 0.9. In:Experimental data base for computer progran assessment," AGARD-AR-138, 1979.
  6. Wilcox, D. C., "Reassessment of the scale-determining equation for advanced turbulence models," AIAA Journal, Vol. 26, No. 11, 1988, pp. 1299-1310. https://doi.org/10.2514/3.10041
  7. Spalart, P. R., and Allmara, S. R, "A One-Equation Turbulence Model for Aerodynamic Flows," AIAA 92-0439, AIAA 30th Aerospace Sciences Meeting and Exhibit, 1992.
  8. Menter, F. R., "Improved Two-Equation Turbulence Models for Aerodynamic Flows," NASA TM-103975, 1992.
  9. Roe, P. L., "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes," Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357-372. https://doi.org/10.1016/0021-9991(81)90128-5