DOI QR코드

DOI QR Code

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Received : 2017.01.23
  • Accepted : 2017.03.07
  • Published : 2017.03.31

Abstract

Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

Keywords

References

  1. E. Drent, W. P. Mul, and A. A. Smaardijk, "Encyclopedia Of Polymer Science and Technology", John Wiley & Sons, New York, 2001.
  2. C. Bianchini and A. Meli, "Alternating copolymerization of carbon monoxide and olefins by single-site metal catalysis", Coord. Chem. Rev., 225, 35 (2002). https://doi.org/10.1016/S0010-8545(01)00405-2
  3. E. Drent, "Process for the preparation of polyketones", European Patent 0121965 A2 (1984).
  4. R. L. Danforth, J. M. Machado, and J. C. M. Jordan, "Development of a New Polymer Family of Thermoplastic Aliphatic Polyketones", SPE ANTEC, 2316 (1995).
  5. M. Kutz, "Applied plastics engineering handbook", pp. 3-26, Elsevier, Amsterdam, 2016.
  6. J. H. Yun, J. H. Yoon, S. M. Ha, and J. H. Kim, "Preparation and Properties of Polyketone/Rubber Blend to Improve Heatresistance", Elast. Compos., 49, 37 (2014). https://doi.org/10.7473/EC.2014.49.1.37
  7. B. J. Lommerts, E. A. Klop, and J. Aerts, "Structure and melting of perfectly alternating ethylene-carbon monoxide copolymers", J. Polym. Sci. B Polym. Phys., 31, 1319 (1993). https://doi.org/10.1002/polb.1993.090311007
  8. E. Drent and P. H. M. Budzelaar, "Palladium-Catalyzed Alternating Copolymerization of Alkenes and Carbon Monoxide", Chem. Rev., 96, 663 (1996). https://doi.org/10.1021/cr940282j
  9. H. S. Cho, J. S. Chung, S. J. Baek, W. J. Choi, J. J. Kim, S. K. Yoon, and J. C. Lee, "Preparation and Properties of Glass Fiber-Reinforced Poly(olefin ketone) Composites", Appl. Chem. Eng., 23, 339 (2012).
  10. S. Y. Kim, J. W. Jeon, D. S. Kwak, W. Lee, D. J. Lee, S. D. Whang, and S. J. Do, "Study on the Mechanical Properties of Polyketone Fiber according to Coating Process for Technical Textile", Textile Coloration and Finishing, 27, 334 (2015). https://doi.org/10.5764/TCF.2015.27.4.334
  11. D. Y. Jin, D. U. Park, J. S. Won, and S. G. Lee, "Effects of Polydopamine Treatment on the Interfacial Adhesion between EPDM Rubber Compound and Polyketone Fiber", Textile Science and Engineering, 52, 408 (2015). https://doi.org/10.12772/TSE.2015.52.408
  12. H. H. Yang, "Handbook of Fiber Chemistry", 3rd Ed., pp. 31-138, CRC Press, Boca Raton, 2006.
  13. D. Forsström and B. Terselius, "Thermo oxidative stability of polyamide 6 films I. Mechanical and chemical characterization", Polym. Degrad. Stab., 67, 69 (2000). https://doi.org/10.1016/S0141-3910(99)00122-6
  14. B. J. Holland and J. N. Hay, "Thermal degradation of nylon polymers", Polym. Int., 49, 943 (2000). https://doi.org/10.1002/1097-0126(200009)49:9<943::AID-PI400>3.0.CO;2-5
  15. B. D. Viers, "Polymer Data Handbook", p. 189, Oxford University Press, Oxford, 1999.
  16. S. M. Kim and K. J. Kim, "Effects of Moisture and Temperature on Recrystallization and Mechanical Property Improvement of PA66/GF Composite", Polymer(Korea), 39, 880 (2015).
  17. G. Szakonyi and R. Zelko, "The effect of water on the solid state characteristics of pharmaceutical excipients: Molecular mechanisms, measurement techniques, and quality aspects of final dosage form", Int. J. Pharm. Investig., 2, 18 (2012). https://doi.org/10.4103/2230-973X.96922
  18. H. Domininghaus, "Plastics for Engineers: Materials, Properties, Applications", Hanser, New York, 1993.
  19. J. L. White and K. J. Kim, "Thermoplastic and Rubber Compounds", pp. 43-53, Hanser, Munich, 2007.
  20. P. K. Gupta, E. Kennal, and K. J. Kim, "Polymer Nanocomposites Handbook", p. 123, CRC Press, Boca Raton, 2009.
  21. M. Lee, H. Kim, and M. Y. Lyu, "A Study on Warpage of Glass Fiber Reinforced Plastics for Part Design and Operation Condition: Part 2. Crystalline Plastics", Polymer(Korea), 36, 677 (2012).
  22. J. W. Cho and D. R. Paul, "Nylon 6 nanocomposites by melt compounding", Polymer, 42, 1083 (2001). https://doi.org/10.1016/S0032-3861(00)00380-3
  23. S. J. Park, J. S. Jin, and J. R. Lee, "Enhancement of Interfacial Adhesion of Glass Fibers-reinforced Unsaturated Polyester matrix Composites: Effect of ${\gamma}$-methacryloxypropyltrimethoxy Silane Treatment Containing ${\gamma}$-aminopropyltriethoxy Silane", J. Korean Ind. Eng. Chem., 12, 143 (2001).
  24. H. Al-Moussawi, E. K. Drown, and L. T. Drzal, "The silane/sizing composite interphase", Polym. Compos., 14, 195 (1993). https://doi.org/10.1002/pc.750140304
  25. V. B. Gupta, R. K. Mittal, P. K. Sharma, G. Menning, and J. Wolters, "Some studies on glass fiber-reinforced polypropylene. Part II: Mechanical properties and their dependence on fiber length, interfacial adhesion, and fiber dispersion", Polym. Compos., 10, 16 (1989). https://doi.org/10.1002/pc.750100104
  26. DuPont, "ZYTEL 70G30HSLR BK099 Technical Data Sheet", 2014.
  27. N. Sombatsompop and K. Chaochanchaikul, "Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly(vinyl chloride)/wood sawdust composites", Polym. Int., 53, 1210 (2004). https://doi.org/10.1002/pi.1535
  28. A. Lasagabaster, M. J. Abad, L. Barral, and A. Ares, "FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films", Eur. Polym. J., 42, 3121 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.029
  29. M. Kohan, "Nylon Plastics Handbook", Hanser/Gardner, New York, 1995.
  30. N. Abacha, M. Kubouchi, and T. Sakai, "Diffusion behavior of water in polyamide 6 organoclay nanocomposites", Express Polym. Lett., 3, 245 (2009). https://doi.org/10.3144/expresspolymlett.2009.31
  31. J. L. Thomason, "The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6", Composites Part A, 40, 114 (2009). https://doi.org/10.1016/j.compositesa.2008.10.013
  32. N. M. M. Abd. Rahman, A. Hassan, and R. Yahya, "Plasticisation Effect on Thermal, Dynamic Mechanical and Tensile Properties of Injection-Moulded Glass-Fibre/Polyamide 6,6", J. Sci. Technol., 3, 47 (2011).
  33. H. H. G. Jellinek and S. R. Dunkle, "Degradation and Stabilization of Polymers, Elsevier", New York, 1983.
  34. J. Y. Lee and K. J. Kim, "Measurement of Degree of Hydrolysis of a PA66/GF Composite using a py-GC/MS analysis", Elast. Compos., 52(1), 59 (2017). https://doi.org/10.7473/EC.2017.52.1.59
  35. D. H. Mackerron and R. P. Gordon, "Minor products from the pyrolysis of thin films of poly(hexamethylene adipamide)", Polym. Degrad. Stab., 12, 277 (1985). https://doi.org/10.1016/0141-3910(85)90095-3