DOI QR코드

DOI QR Code

Measurement of Degree of Hydrolysis of a PA66/GF Composite using a py-GC/MS analysis

  • Received : 2017.02.22
  • Accepted : 2017.03.07
  • Published : 2017.03.31

Abstract

The effect on the hydrolysis resistance properties by the addition of maleic anhydride grafted EMDM (MA-g-EPDM) and PP (MA-g-PP) to a PA66/GF composite was investigated with respect to the mechanical properties, thermal properties, and morphology. The degree of hydrolysis of the PA66/GF composite was measured using py-GC/MS analysis. When compared to the PA66/GFcomposite in MEG/water solution, the composites where MA-g-EPDM and MA-g-PP were added to PA66/GF showed a higher degree of hydrolysis resistance, impact strength, and thermal properties, whereas their tensile strength, tensile modulus, flexural strength and flexural modulus decreased. As immersion time in the solution increases, the rate of tensile strength drop of the MA-g-PP added composite appeared lower than that of the PA66/MA-g-EPDM/GF and PA66/GF composites. The py-GC/MS analysis confirmed the formation of PA66 hydrolysis reaction by products such as carboxylic acid and alkylamine with increasing immersion time.

Keywords

References

  1. W. H. Jang and J. S. Go, "Mechanical properties and morphology of polyamide6/maleated polypropylene blends", Korean Soc. Ind. Eng. Chem., 10, 1136 (1999).
  2. B. Y. Shin, M. H. Ha, and D. H. Han, "Morphological, rheological, and mechanical properties of polyamide 6/polypropylene blends compatibilized by electron-beam irradiation in the presence of a reactive agent", Materials, 9, 342 (2016). https://doi.org/10.3390/ma9050342
  3. W. H. Carothers and G. J. Berchet, "Studies on polymerization and ring formation. viii. amides from ${\varepsilon}$-aminocaproic acid", J. Am. Chem. Soc., 52, 5289 (1930). https://doi.org/10.1021/ja01375a091
  4. B. D. Viers, "Polymer Data Handbook", Oxford University Press, Oxford, 1999.
  5. B. J. Holland and J. N. Hay, "Thermal degradation of nylon polymers", Polym. Int., 49, 943 (2000). https://doi.org/10.1002/1097-0126(200009)49:9<943::AID-PI400>3.0.CO;2-5
  6. D. Forsström and B. Terselius, "Thermo oxidative of polymaide 6 films. I. Mechanical and chemical characterization", Polym. Degrad. Stab., 67, 69 (2000). https://doi.org/10.1016/S0141-3910(99)00122-6
  7. W. Y. Jung and J. I. Weon, "Characterization of thermal degradation of polyamide 66 composite: Relationship between lifetime prediction and activation energy", Polymer(Korea), 36, 712 (2012).
  8. J. H. Park, W. N. Kim, I. H. Kwon, S. H. Lim, M. B. Ko, and C. R. Choe, "Effects of processing conditions of injection molding on the microstructure of long fiber reinforced nylon composites", Polymer(Korea), 23, 681 (1999).
  9. B. S. Yoon, D. J. Woo, M. H. Suh, and S. H. Lee, "A study on the ternary GF/PA/PP composites manufactured by using preimpregnated glass fiber", Polymer(Korea), 24, 701 (2000).
  10. J. Rohrer, "Show planner featured in July issue", Rubber World, 252, 4 (2015).
  11. W. Watt and B. V. Perov, "Strong Fibres", Amsterdam, Elsevier Sci, 1985.
  12. R. K. Gupta, E. Kennel, and K.-J. Kim, "Polymer nanocomposites handbook", CRC Press, New York, 2009.
  13. J. L. White and K.-J. Kim, "Thermoplastic and Rubber Compounds Technology and Physical Chemistry", Carl Hanser Verlag GmbH & Co. KG, 2008.
  14. D. Heiken and W. Barentsen, "Particle dimensions in polystyrene/polyethylene blends as a function of their melt viscosity and of the concentration of added graft copolymer", Polymer, 18, 69 (1977). https://doi.org/10.1016/0032-3861(77)90264-6
  15. W. S. Chow, Z. A. MohdIshak, J. Karger-Kocsis, A. A. Apostolov, and U. S. Ishiaku, "Compatibilizing effect of maleated polypropylene on the mechanical properties and morphology of injection molded polyamide 6/polypropylene/organoclay nanocomposites", Polymer, 44, 7427 (2003). https://doi.org/10.1016/j.polymer.2003.09.006
  16. W. S. Chow, Z. A. MohdIshak, U. S. Ishiaku, J. Karger-Kocsis, and A. A. Apostolov, "The effect of organoclay on the mechanical properties and morphology of injection molded polyamide 6/polypropylene nanocomposites", J. Appl. Polym. Sci., 91, 175 (2004). https://doi.org/10.1002/app.13244
  17. P. Motamedi and R. Bagheri, "Modification of nanostructure and improvement of mechanical properties of polypropylene/polyamide 6/layered silicate ternary nanocomposites through variation of processing route", Composites Part B, 85, 207 (2016). https://doi.org/10.1016/j.compositesb.2015.09.033
  18. B. Zhang, J. S.-P. Wong, R. C.-M. Yam, and R. K.-Y. Li, "Enhanced wear performance of nylon 6/organoclay nanocomposite by blending with a thermotropic liquid crystalline polymer", Polym. Eng. Sci., 50, 900 (2010). https://doi.org/10.1002/pen.21607
  19. D. Garcia-Lopez, S. Lopez-Quintana, I. GobernadoMitre, J. C. Merino, and J. M. Pastor, "Study of melt compounding conditions and characterization of polyamide 6/metallocene ethylene-polypropylene-diene copolymer/maleated ethylenepolypropylene-diene copolymer blends reinforced with layered silicates", Polym. Eng. Sci., 47, 1033 (2007). https://doi.org/10.1002/pen.20782
  20. K. Wang, C. Wang, J. Li, J. Su, Q. Zhang, R. Du, and Q. Fu, "Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites", Polymer, 48, 2144 (2007). https://doi.org/10.1016/j.polymer.2007.01.070
  21. L. Zhang, C. Wan, and Y. Zhang, "Investigation on morphology and mechanical properties of polyamide 6/maleated ethylene-propylene-diene rubber/organoclay composites", Polym. Eng. Sci., 49, 209 (2009). https://doi.org/10.1002/pen.21201
  22. R. Gallego, D. Garcia-Lopez, J. C. Merino, and J. M. Pastor, "How do the shape of clay and type of modifier affect properties of polymer blends?", J. Appl. Polym. Sci., 127, 3009 (2013). https://doi.org/10.1002/app.37979
  23. S. C. Tjong and S. P. Bao, "Impact fracture toughness of polyamide-6/montmorillonite nanocomposites toughened with a maleated styrene/ethylene butylene/styrene elastomer", J. Polym. Sci. Part B: Polym. Phys., 43, 585 (2005). https://doi.org/10.1002/polb.20360
  24. R. D. Farahani and S. A. Ahmad Ramazani, "Melt preparation and investigation of properties of toughened polyamide 66 with SEBS-g-MA and their nanocomposites", Mater. Des., 29, 105 (2008). https://doi.org/10.1016/j.matdes.2006.11.018
  25. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Compatibilization level effects on the structure and mechanical properties of rubber-modified polyamide-6/clay nanocomposites", J. Polym. Sci. Part B: Polym. Phys., 43, 3611 (2005). https://doi.org/10.1002/polb.20663
  26. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Rubber-toughened polyamide 6/clay nanocomposites", Compos. Sci. Technol., 66, 1833 (2006). https://doi.org/10.1016/j.compscitech.2005.10.008
  27. Gonzalez, J. I. Eguiazabal, and J. Nazabal, "Effects of the processing sequence and critical interparticle distance in PA6-clay/mSEBS nanocomposites", Eur. Polym. J., 44, 287 (2008). https://doi.org/10.1016/j.eurpolymj.2007.11.027
  28. B. Zhang, J. S.-P. Wong, D. Shi, R. C.-M. Yam, and R. K.-Y. Li, "Investigation on the mechanical performances of ternary nylon 6/SEBS elastomer/nano-$SiO_2$ hybrid composites with controlled morphology", J. Appl. Polym. Sci., 115, 469 (2010). https://doi.org/10.1002/app.30185
  29. C. Z. Liao and S. C. Tjong, "Mechanical and thermal behavior of polyamide 6/silicon carbide nanocomposites toughened with maleated styrene-ethylene-butylene-styrene elastomer", Fatigue Fract. Eng. Mater. Struct., 35, 56 (2012). https://doi.org/10.1111/j.1460-2695.2011.01561.x
  30. L. Zhou, Y. Wan, X. Chen, S. Sun, and C. Zhou, "Toughening of PA6 nanocomposites by reactive acrylonitrile-butadienestyrene core-shell rubber particles", Polym. Compos., 35, 864 (2014). https://doi.org/10.1002/pc.22730
  31. H. Domininghaus, "Plastics for engineers: Materials, properties, applications", Hanser Publishers, New York, 1993.
  32. D. Joachimi, H. Schlte, W. Littek, and J. Kadelka, "Highly viscous polyamide for use in extrusion blow molding", U.S.Patent 20030092822 (2003).
  33. S. M. Kim and K. J. Kim, "Effects of moisture and temperature on recrystallization and mechanical property improvement of PA66/GF composite", Polymer(Korea), 39, 880 (2015).
  34. R. van Mullekom, D. Joachimi, A. Karbach, P. Persigehl, and M. De Bock, "Molding compositions and their use", U.S.Patent 20050043443 (2005).
  35. L. Huang, Q. Pei, Q. Yuan, H. Li, F. Cheng, J. Ma, S. Jiang, L. An, and W. Jiang, "Brittle-ductile transition in PP/EPDM blends: effect of notch radius", Polymer, 44, 3125 (2003). https://doi.org/10.1016/S0032-3861(03)00205-2
  36. S. C. Tjong, W. D. Li, and R. K. Y. Li, "Impact toughening behaviour of quaternary PP/HDPE/EPDM/EP blends", Eur. Polm. J., 34, 755 (1998). https://doi.org/10.1016/S0014-3057(97)00182-1
  37. J.-Y. Lee and K. J. Kim, "Overview of Polyamide Resins and Composites : A Review", Elast. Compos., 51, 317 (2016). https://doi.org/10.7473/EC.2016.51.4.317
  38. R. P. Lattimer, "Direct analysis of polypropylene compounds by thermal desorption and pyrolysis-mass spectrometry", J. Anal. Appl. Pyrolysis, 26, 65 (1993). https://doi.org/10.1016/0165-2370(93)85019-U
  39. N. Sombatsompop and K. Chaochanchaikul, "Effect of moisture content on mechanical properties, thermal and structural stability and extrudate texture of poly (vinyl chloride)/wood sawdust composites", Polym. Int., 53, 1210 (2004). https://doi.org/10.1002/pi.1535
  40. M. Kohan, "Nylon Plastics Handbook", Hanser/Gardner, New York, 1995.
  41. A. Lasagabaster, M. J. Abad, L. Barral, and A. Ares, "FTIR study on the nature of water sorbed in polypropylene (PP)/ethylene alcohol vinyl (EVOH) films", Eur. Polym. J., 42, 3121 (2006). https://doi.org/10.1016/j.eurpolymj.2006.03.029
  42. H. H. G. Jellinek and S. R. Dunkle, "Degradation and Stabilization of Polymers", Elsevier, New York, 1983.
  43. J. L. Thomason, "The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6,6", Compos. Part A-Appl. Sci. Manuf., 40, 114 (2009). https://doi.org/10.1016/j.compositesa.2008.10.013
  44. M. M. Coleman, P. C. Painter, and J. F. Graf, "Specific Interactions and Miscibility of Polymer Blends", Technomic Publishing Co., Inc., Lancaster, Pennsylvania, 1991.
  45. M. R. Parvaiz, "Influence of silane-coupling agents on the performance of morphological, mechanical, thermal, electrical, and rheological properties of polycarbonate/fly ash composites", Polym. Compos., 33, 1798 (2012). https://doi.org/10.1002/pc.22325
  46. G. Montaudo and C. Puglisi, "Thermal Degradation Mechanisms in Condensation Polymers, in Developments in Polymer Degradation", N. Grassie, Ed. Applied Science, London, 1987.
  47. G. Montaudo and C. Puglisi, "Thermal Degradation of Condensation Polymers, in Comprehensive Polymer Science", Pergamon Press, Oxford, 1992.
  48. H.-J. Dussel, H. Rosen, and D. O. Hummel, "Feldionen- und ElektronenstoB-Massenspektrometrie von Polymeren und Copolymeren, 5. Aliphatische und aromatische Polyamide und Polyimide", Makromol. Chem., 177, 2343 (1976). https://doi.org/10.1002/macp.1976.021770811
  49. H. Ohtani, I. Nagaya, Y. Sugimura, and S. Tsuge, "Studies on thermal degradation of aliphatic polyamides by pyrolysisglass capillary chromatography", J. Anal. Appl. Pyrol., 4, 117 (1982). https://doi.org/10.1016/0165-2370(82)80003-X
  50. P. R. Hornsby, J. Wang, R. Rothon, G. Jackson, G. Wilkinson, and K. Cossick, "Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler", Polym. Degrad. Stab., 51, 235 (1996). https://doi.org/10.1016/0141-3910(95)00181-6
  51. D. H. MacKerron and R. P. Gordon, "Minor products from the pyrolysis of thin films of poly(hexamethylene adipamide)", Polym. Degrad. Stab., 12, 277 (1985). https://doi.org/10.1016/0141-3910(85)90095-3
  52. G. Montaudo and R. P. Lattimer, "Mass Spectrometry of Polymers", CRC Press, Boca Raton London Washington, 2001.

Cited by

  1. MEG Effects on Hydrolysis of Polyamide 66/Glass Fiber Composites and Mechanical Property Changes vol.24, pp.4, 2019, https://doi.org/10.3390/molecules24040755