DOI QR코드

DOI QR Code

Anti-melanogenesis Active Constituents from the Extracts of Carpinus turczaninowii Leaves

소사나무 잎 추출물 유래 멜라닌합성 저해 활성 성분

  • Kang, Ji Mi (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Kim, Jung Eun (Department of Chemistry and Cosmetics, Jeju National University) ;
  • Lee, Nam Ho (Department of Chemistry and Cosmetics, Jeju National University)
  • 강지미 (제주대학교 화학.코스메틱스학과) ;
  • 김정은 (제주대학교 화학.코스메틱스학과) ;
  • 이남호 (제주대학교 화학.코스메틱스학과)
  • Received : 2016.12.28
  • Accepted : 2017.02.20
  • Published : 2017.03.31

Abstract

Melanin synthesis inhibition activities were investigated for the extracts prepared from the leaves of Carpinus turczaninowii (C. turczaninowii) by using B16F10 melanoma cells. As a result, the ethanol extract ($100{\mu}g/mL$) showed 72.2% inhibition activities without cell toxicities in MTT assays. For the solvent fractions (n-hexane, ethyl acetate, n-butanol, water), the most potent activities were observed at the ethyl acetate fraction. To isolate the active constituents, the ethyl acetate fraction was further purified to afford four compounds; ethyl gallate (1), quercetin rhamnose (2), kaempferol rhamnose (3) and quercetin galloylrhamnose (4). The identification of the isolates was made by spectroscopic data including NMR spectra, and all of the compounds 1-4 were isolated for the first time from the leaves of C. turczaninowii. Anti-melanogenesis activities were studied for the isolates 1-4, and the compound 4 was determined to decrease the melanin synthesis dose-dependently without causing cell toxicities. ELISA measurement indicated that the isolate 4 decreased the contents of cell tyrosinase, a critical enzyme in melanogenesis. Based on these results, the extracts of C. turczaninowii were found to be applicable as whitening ingredients in cosmetic formulations.

소사나무(Carpinus turczaninowii, C. turczaninowii) 잎 추출물의 멜라닌 생성 억제활성을 B16F10 melanoma 세포를 이용하여 측정하였다. 그 결과, 에탄올 추출물($100{\mu}g/mL$)에서 72.2%의 생성 억제 효과를 확인하였으며, 동일 농도에서 MTT 세포독성은 거의 나타나지 않았다. 분획물(헥산, 에틸아세테이트, 부탄올 및 물)을 제조한 후 실험을 진행한 결과, 에틸아세테이트 분획에서 가장 우수한 활성이 관찰되었다. 에틸아세테이트 분획에서 활성성분을 규명하기 위하여 크로마토그라피를 진행하였으며, 4개의 화합물을 분리 동정하였다; ethyl gallate (1), quercetin rhamnose (2), kaempferol rhamnose (3), quercetin galloylrhamnose (4). 화합물의 구조규명은 핵자기공명분광기 등을 이용하여 이루어졌으며, 4개의 화합물 모두 소사나무 잎에서는 처음 분리된 물질이다. 분리된 화합물을 대상으로 멜라닌 생성 억제활성 실험을 진행한 결과, 화합물 4에서 세포독성 없이 농도의존적인 억제활성을 확인하였다. 또한, 화합물 4는 세포 내에서 티로시나제 발현양을 감소시키고 있음을 ELISA를 통하여 확인하였다. 이상의 결과를 바탕으로, 소사나무 잎 추출물이 화장품에서 미백제로 활용될 가능성이 있다고 판단된다.

Keywords

References

  1. Y. Cho, K. H. Kim, J. S. Shim, and J. K. Hwang, Inhibitory effects of macelignan isolated from Myristica fragrans HOUTT. on melanin biosynthesis, Biol. Pharm. Bull., 31(5), 986 (2008). https://doi.org/10.1248/bpb.31.986
  2. J. M. Gillbro and M. J. Olsson, The melanogenesis and mechanisms of skin-lightening agents-existing and new approaches, Int. J. Cosmet. Sci., 33(3), 210 (2011). https://doi.org/10.1111/j.1468-2494.2010.00616.x
  3. E. Jung, W. Hwang, S. Kim, Y. S. Kim, Y. S. Kim, J. Lee, and D. Park, Depigmenting action of platycodin D depends on the cAMP/Rho-dependent signalling pathway, Exp. Dermatol., 20(12), 986 (2011). https://doi.org/10.1111/j.1600-0625.2011.01379.x
  4. J. H. Han, S. H. Byeon, C. G. Hyun, and N. H. Lee, Melanogenesis inhibitory activity in the extracts of Oreocnide fruticose (Gaudich.) Hand.-Mazz. branches, J. Appl. Polym. Sci., 4(1), 166 (2014).
  5. J. S. Roh, J. Y. Han, J. H. Kim, and J. K. Hwang, Inhibitory effects of active compounds isolated from safflower (Carthamus tinctorius L.) seeds for melanogenesis, Biol. Pharm. Bull., 27(12), 1976 (2004). https://doi.org/10.1248/bpb.27.1976
  6. J. I. Jeon and J. S. Jang, Foliar flavonoids of genus Carpinus in eastern Asia primarily based on native taxa to Korea, Kor. J. Plant Tax., 30(2), 139 (2000). https://doi.org/10.11110/kjpt.2000.30.2.139
  7. H. N. Ko, T. H. Oh, J. S. Baik, C. G. Hyun, S. S. Kim, and N. H. Lee, Anti-inflammatory activities for the extracts and carpinontriols from branches of Carpinus turczaninowii, Int. J. Pharmacol., 9(2), 157 (2013). https://doi.org/10.3923/ijp.2013.157.163
  8. O. Estradal, M. Hasegawal, F. G. Mujica, N. Motta, E. Perdomol, A. Solorzano, J. Mendezl, B. Mendezl, and E. G. Zea, Identification and activity of ethyl gallate as an antimicrobial compound produced by Geranium carolinianum, Weed Biol. Manag., 9(2), 169 (2009). https://doi.org/10.1111/j.1445-6664.2009.00335.x
  9. J. H. Lee, C. H. Ku, N. I. Baek, S. H. Kim, H. W. Park, and D. K. Kim, Phytochemical constituents from Diodia teres, Arch. Pharm. Res., 27(1), 40 (2004). https://doi.org/10.1007/BF02980043
  10. S. K. Chung, Y. C. Kim, Y. Takaya, K. Terachima, and M. Niwa, Novel flavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect, J. Agric. Food Chem., 54(15), 4664 (2004).
  11. E. Omar, H. Masahisa, G. M. Freddy, M. Norma, P. Elsa, S. Alejandra, M. Jeannette, M. Bernardo, and Z. Gabriela, Evaluation of flavonoids from Bauhinia meglalandra leaves as inhibitors of glucose-6-phosphatase system, Phytother. Res., 19(10), 859 (2005). https://doi.org/10.1002/ptr.1703

Cited by

  1. Ecophysiological Responses of Carpinus turczaninowii L. to Various Salinity Treatments vol.10, pp.2, 2019, https://doi.org/10.3390/f10020096