DOI QR코드

DOI QR Code

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency

과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구

  • Koo, Seongmo (Department of Environmental Engineering, Yeungnam University) ;
  • Chang, Hyuksang (Department of Environmental Engineering, Yeungnam University)
  • Received : 2016.10.11
  • Accepted : 2016.12.31
  • Published : 2017.03.31

Abstract

Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.

탈질과 탈황을 동시에 수행하는 과산화수소($H_2O_2$) 수용액 세정탑의 반응효율을 증가시키기 위해 예혼합이 이루어지는 혼합 냉각기(mixing quencher) 영역 내부의 유체유동에 대한 수치해석이 수행되었다. 산업공정에서 상용화되고 있는 세정탑 전단부의 혼합냉각기에서 과산화수소 수용액이 주입되는 노즐의 분사방식은 배기가스와 과산화수소 수용액의 혼합에 중요한 역할을 하며, 혼합냉각기에서의 혼합도는 세정탑 의 효율을 결정하는 중요 요소가 된다. 본 연구에서는 혼합냉각기 내부유체의 농도분포 개선을 목적으로 하여 혼합냉각기 내의 노즐 관의 배열을 조절하거나 노즐 팁 각도를 변경하며 유체혼합을 최적화하였다. 전산해석은 이 냉각기영역의 내부유동 및 각 유체 농도에 대한 RMS (root mean square) 값을 계산하여 내부유체의 혼합도의 개선을 확인하였다. 세부적으로는 노즐 관의 위치를 조절할 때 변경되는 냉각기 영역 후단의 농도 RMS 값을 확인하여 난류형성위치에 따른 최적화된 혼합도를 확인하였으며 기본형상 대비 난류형성방향을 조절하는 목적의 노즐 팁 각도를 증감하여 농도분포의 균질화를 비교하였다. 노즐 관의 배열에 따라 난류형성위치와 그에 따른 유체혼합이 해석되었다. 또한 노즐 팁 각도를 조절하는 경우에는 유동방향과의 각도에 따라, 흐름이 병류와 향류에 따라 혼합도의 최적화를 확인할 수 있었다. 노즐 관의 위치는 0.3 m, 노즐 팁은 병류의 $15^{\circ}$일 때 최적의 조건을 가지며 가장 낮은 RMS 값인 12.4%를 가졌다.

Keywords

References

  1. Zhao, Y., Guo, T., and Chen, Z., "Experimental Study on Simultaneous Desulfurization and Denitrification from Flue Gas with Composite Absorbent," Environ. Progress & Sustainable Energy, 30(2), 216-220 (2011). https://doi.org/10.1002/ep.10470
  2. Topsoe, N. Y., Topsoe, H., and Dumesic, J. A., "Vanadia/Titania Catalysts for Selective Cataytic Reduction (SCR) of Nitric-Oxid by Ammonia: I. Combined Temperature-Programmed in situ FTIR and On-line Mass- Spectroscopy Studies," J. Catal., 151(1), 226-240 (1995). https://doi.org/10.1006/jcat.1995.1024
  3. Leckner, B., Karisson, M., Dam-Johansen, K., Weinell, C. E., Kilpinen, P., and Hupa, M., "Influence of Additives on Selective Non-catalytic Reduction of NO with $NH_3$ in Circulating Fluidized Bed Boilers," Ind. Eng. Chem. Res., 30(11), 2396-2404 (1991). https://doi.org/10.1021/ie00059a006
  4. Huang, H. Y. and Yang, R. T., "Removal of NO by Reversible Adsorption on Fe-. Mn Based Transition Metal Oxides," Langmuir, 17(16), 4997-5003 (2001). https://doi.org/10.1021/la0102657
  5. Ighigeanu, D., Martin, D., Zissulescu, E., Macarie, R., Oproiu, C., Cirstes, E., Iovu, H., Calinescu, I., and Iacob, N., "$SO_2$ and $NO_x$ Removal by Electron Beam and Electrical Discharge Induced Non-thermal Plasmas," Vaccum, 77(4), 493-500 (2005). https://doi.org/10.1016/j.vacuum.2004.09.009
  6. Busca, G., Lietti, L., Ramis, G., and Berti, F., "Chemical and Mechanistic Aspects of Selective Catalytic Reduction of $NO_x$ by Ammonia over Catalysts," A Rev. Appl. Catal. B Environ., 18(1), 1-36 (1988).
  7. Long, R. Q., Yang, R. T., and Chang, R., "Low Temperature Selective Catalytic Reduction of NO and $NH_3$ over Fe-, Mn based catalysts," Chem. Commun., 7(5), 452-453 (2002).
  8. Serra, J. M., Chica, A., and Corma, A., "Development of a Low Temperature Light Paraffin Isomerization Cataysts with Improved Resistance to Water and Sulphur by Combinatorial Method," Appl. Catal. A General, 239(1-2), 35-42 (2003). https://doi.org/10.1016/S0926-860X(02)00371-X
  9. Khan, N. E., and Adewuyi, Y. G., "Abosorption and Oxidation of Nitric Oxide (NO) by Aqueous Solution of Sodium Persulfate in a Bubble Column Reactor," Ind. Eng. Chem. Res., 49(18), 8749-8760 (2010). https://doi.org/10.1021/ie100607u
  10. Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., and Cen, K., "Simultaneous Removal of $NO_x$, $SO_2$ and Hg in Nitrogen Flow in a Narrow Reactor by Ozone Injection: Experimental Results," Fuel Proc. Technol., 88(8), 817-823 (2007). https://doi.org/10.1016/j.fuproc.2007.04.001
  11. Lousada, C. M., and Jonsson, M., "Kinetic, Mechanism, and Activation Energy of $H_2O_2$ Decomposition on the Surface of $ZrO_2$," J. Phys. Chem. C, 114(25), 11202-11208 (2010). https://doi.org/10.1021/jp1028933
  12. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, 1st ed., McGraw-Hill, New York, Chap.3 1980.
  13. ANSYS, ANSYS Fluent User's Guide, ANSYS Inc. 2013.
  14. ANSYS, ANSYS Fluent Theory Guide, ANSYS Inc. 2013.
  15. Wark, K., Warner, C. F. and Davis, W. T., Air Pollution: Its Origin and Control, 3rd ed., Prentice Hall, New York, Chap 5. 1998.

Cited by

  1. CFD simulation analysis of two-dimensional convergent-divergent nozzle pp.2162-8246, 2018, https://doi.org/10.1080/01430750.2018.1517683