DOI QR코드

DOI QR Code

Applicability of Various Biomasses to Pulverized Coal Power Plants in Terms of their Grindability

다양한 바이오매스의 분쇄도 실험을 통한 미분탄 화력발전 적용가능성 연구

  • Kang, Byeol (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Lee, Yongwoon (Thermochemical Energy System Group, Korea Institute of Industrial Technology) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Yang, Won (Thermochemical Energy System Group, Korea Institute of Industrial Technology)
  • 강별 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 이용운 (한국생산기술연구원 고온에너지시스템그룹) ;
  • 류창국 (성균관대학교 기계공학부) ;
  • 양원 (한국생산기술연구원 고온에너지시스템그룹)
  • Received : 2016.08.25
  • Accepted : 2016.10.05
  • Published : 2017.03.31

Abstract

Recently usage of biomass is increased in pulverized coal power plants for reduction of $CO_2$ emission. Many problems arise when thermal share of the biomass is increased, and milling of the biomasses is one of the most important problems due to their low grindability when existing coal pulverizer is used. Grindability of coal can be measured through the HGI (Hardgrove grindability index) equipment as a standard, but method of measuring biomass grindability has not been established yet. In this study, grinding experiment of coal and biomass was performed using a lab-scale ball mill. One type of coal (Adaro coal) and six biomasses (wood pellet (WP), empty fruit bunch (EFB), palm kernel shell (PKS), walnut shell (WS), torrefied wood chip (TBC) and torrefied wood pellet (TWP)) were used in the experiment. Particle size distributions of the fuels were measured after being milled in various pulverization times. Pulverization characteristics were evaluated by portion of particles under the diameter of $75{\mu}m$. As a result, about 70% of the TBC and TWP were observed to be pulverized to sizes of under $75{\mu}m$, which implies that they can be used as alternative biomass fuels without modification of the existing mill. Other biomass was observed to have low grindability compared with torrefied biomass. Power consumption of the mill for various fuels was measured as well, and the results show that lower power was consumed for torrefied biomasses. This result can be used for characterization of biomass as an alternative fuel for pulverized coal power plants.

기후 변화 대응을 위한 온실가스 감축 측면에서, 석탄화력발전소에서 바이오매스 사용량은 계속하여 증가되어 왔다. 파리 협정 이후 온실가스 감축 목표치가 더욱 구체화되면서 바이오매스 사용은 급격히 더 많아질 것으로 예상된다. 미분탄 석탄 화력발전에서 바이오매스 혼소시 가장 큰 문제점 중 하나는 바이오매스의 미분성이 석탄에 비해 훨씬 낮다는 것으로, 이를 해결하기 위해 가장 먼저 바이오매스의 미분성 측정 방법을 확립하는 작업이 필요하다. 석탄의 경우 HGI (hardgrove grindability index)측정 장치를 통해 분쇄도 측정이 가능하여 이를 표준으로 삼고 있지만, 바이오매스의 경우 표준 측정 방법이 확립되어있지 않다. 본 연구에서는 볼 밀과 입자 크기별 분포량을 이용한 석탄과 바이오매스의 분쇄 실험을 진행하였다. 실험에는 석탄 1종과 바이오매스 6종을 사용하였다. 분쇄시간에 따른 입자 분포량을 비교하고, $75{\mu}m$ 이하 입자 분포량으로 분쇄도를 평가하였다. 실험결과 반탄화 바이오매스 TBC (torrefied biomass chip)와 TWP (torrefied wood chip)는 발전용 사용적합 기준에 대해 대략적으로 70%의 값을 나타냈다. 다른 바이오매스들의 경우 반탄화 바이오매스와 비교했을 때 분쇄성이 훨씬 더 낮은 결과를 보였다. TBC와 TWP는 수분이 감소하고 섬유질 구조가 분해되는 반탄화 과정을 통해 분쇄가 향상되었다. 또한 분쇄도가 높은 반탄화 바이오매스가 소모전력이 낮게 측정되었다. 본 연구를 통해 바이오매스의 석탄화력발전 적용을 위한 표준화 작업의 기초 자료들을 확보할 수 있다.

Keywords

References

  1. Statistics of electric power in Korea, Korea Electric Power Corporation, 85, (2015).
  2. Baxter, L., "Biomass-coal Co-Combustion: Opportunity for Affordable Renewable Energy," Fuel, 84(10), 1295-1302 (2005). https://doi.org/10.1016/j.fuel.2004.09.023
  3. Narayanan, K. V., and Natarajan, E., "Experimental Studies on Cofiring of Coal and Biomass Blends in India," Renewable Energy, 32(15), 2548-2558 (2007). https://doi.org/10.1016/j.renene.2006.12.018
  4. Tillman, D. A., "Biomass Cofiring: the Technology, the Experience, the Combustion Consequences," Biomass and Bioenergy, 16(6), 365-384 (2000).
  5. The British Standards Institution. BS 1016-112: 1995 Methods for Analysis and Testhing of Coal and Coke, Determination of Hardgrove grindability index of hard coal, (1995).
  6. Van Essendelft, D. T., Zhou, X., and Kang, B. J., "Grindability Determination of Torrefied Biomass Materials using the Hybrid Work Index," Fuel, 105, 103-111 (2013). https://doi.org/10.1016/j.fuel.2012.06.008
  7. Ohliger, A., Forster, M., and Kneer, R., "Torrefaction of Beechwood: A Parametric Study Including Heat of Reaction and Grindability" Fuel, 104, 607-613 (2013). https://doi.org/10.1016/j.fuel.2012.06.112
  8. Satpathy, S. K., Tabil, L. G., Meda, V., Naik, S. N., and Prasad, R., "Torrefaction of Wheat and Barley Straw after Microwave Heating," Fuel, 124, 269-278 (2014). https://doi.org/10.1016/j.fuel.2014.01.102
  9. Bridgeman, T. G., Jones, J. M., Williams, A., and Waldron, D. J., "An Investigation of the Grindability of Two Torrefied Energy Crops," Fuel, 89(12), 3911-3918 (2010). https://doi.org/10.1016/j.fuel.2010.06.043
  10. Ibrahim, R. H., Darvell, L. I., Jones, J. M., and Williams, A., "Physicochemical Characterisation of Torrefied Biomass," J. Anal. Appl. Pyrol., 103, 21-30 (2013). https://doi.org/10.1016/j.jaap.2012.10.004
  11. Shang, L., Ahrenfeldt, J., Holm, J. K., Sanadi, A. R., Barsberg, S., Thomsen, T., and Henriksen, U. B., "Changes of Chemical and Mechanical Behavior of Torrefied Wheat Straw," Biomass and Bioenergy, 40, 63-70 (2012). https://doi.org/10.1016/j.biombioe.2012.01.049
  12. Williams, O., Eastwick, C., Kingman, S., Giddings, D., Lormor, S., and Lester, E., "Investigation into the Applicability of Bond Work Index (BWI) and Hardgrove Grindability Index (HGI) Tests for Several Biomasses Compared to Colombian La Loma coal," Fuel, 158, 379-387 (2015). https://doi.org/10.1016/j.fuel.2015.05.027
  13. Helble, J. J., Srinivasachar, S., and Boni, A. A., "Factors Influencing the Transformation of Minerals During Pulverized Coal Combustion," Progr. Energy and Combustion Sci., 16(4), 267-279 (1990). https://doi.org/10.1016/0360-1285(90)90036-3

Cited by

  1. 바이오매스 연료로서 미활용 농업부산물의 반탄화 특성 vol.59, pp.5, 2017, https://doi.org/10.5389/ksae.2017.59.5.017