DOI QR코드

DOI QR Code

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts

Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구

  • Park, Yong Beom (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Hankwon (Department of Advanced Materials and Chemical Engineering, Catholic University of Daegu) ;
  • Woo, Hee-Chul (Department of Chemical Engineering, Pukyong National University)
  • 박용범 (부경대학교 화학공학과) ;
  • 임한권 (대구가톨릭대학교 신소재화학공학과) ;
  • 우희철 (부경대학교 화학공학과)
  • Received : 2017.02.20
  • Accepted : 2017.02.25
  • Published : 2017.03.31

Abstract

Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

해조류로부터 수열 액화 반응을 통해 생성된 원료를 이용하여 수소가스를 생산하기 위해 개질 반응용 상용화 촉매와 $K_2Ti_xO_y$가 첨가된 니켈(Ni) 제조 촉매를 사용하여 반응온도에 따른 수증기 개질 반응을 수행하였다. 반응원료는 해조류 바이오매스를 503 K의 반응온도에서 2시간 동안 수열 액화를 통해 생성된 액화 원료를 사용하였으며, 상용화 촉매(FCR-4-02)와 제조 촉매($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$, Ni/$K_2Ti_xO_y$-MgO) 및 반응온도에 따른 수증기 개질 반응의 활성을 비교 연구하였다. 실험결과 제조 촉매 4종 모두 상용화 촉매와 비교하여 반응활성이 높게 나타나는 것이 확인되었으며, 제조 촉매의 지지체에 따라 생성되는 가스의 조성이 달라지는 것이 확인되었다. 특히, 산성이나 염기성을 띄는 $Al_2O_3$와 MgO의 지지체와 중성을 띄는 $SiO_2$의 지지체에서는 CO가 선택적으로 높게 생성이 되었으며 환원성을 띄는 $CeO_2$를 포함하는 지지체에서는 수성가스 전환 반응이 일어나 $CO_2$가 높게 생성됨을 보였다.

Keywords

References

  1. Goyal, N., Pant, K. K., and Gupta, R., "Hydrogen Production by Steam Reforming of Model Bio-oil Using Structured Ni/$Al_2O_3$ Catalysts," Int. J. Hydrogen. Energy, 38, 921-933 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.080
  2. Heracleous, E., "Well-to-Wheels Analysis of Hydrogen Production from Bio-oil Reforming for Use in Internal Combustion Engines," Int. J. Hydrogen. Energy, 36, 11501-11511 (2011). https://doi.org/10.1016/j.ijhydene.2011.06.052
  3. Maximiliano, M., Guido, W. S., Francese, C., and Daniel, M., "Life Cycle Inventory Analysis of Hydrogen Production by the Steam-Reforming Process: Comparison between Vegetable Oils and Fossil Fuels as Feedstock," Green Chem., 4, 414-423 (2002). https://doi.org/10.1039/B203742B
  4. Bbridgwater, A. V., "Review of Fast Pyrolysis of Biomass and Product Upgrading," Biomass Bioenergy, 38, 68-94 (2012). https://doi.org/10.1016/j.biombioe.2011.01.048
  5. Czernik, S., Evans, R., and French, R., "Hydrogen from Biomass Production by Steam Reforming of Biomass Pyrolysis Oil," Catal. Today, 129, 265-268 (2007). https://doi.org/10.1016/j.cattod.2006.08.071
  6. Christensen, J. M., Mortense, P. M., Trane, R., Jensen, A. D., and Jense, P. A., "Effects of $H_2S$ and Process Conditions in the Synthesis of Mixed Alcohols from Syngas over Alkali Promoted Cobalt-Molybdenum Sulfide," Appl. Catal., A., 366, 29-43 (2009). https://doi.org/10.1016/j.apcata.2009.06.034
  7. Raffelt, K., Henrich, E., Kogel, A., Stahl, R., Steinhardt, J., and Weirich, F., "The BTL2 Process of Biomass Utilization Entrained-Flow Gasification of Pyrolyzed Biomass Slurries," Appl. Biochem. Biotechnol., 129, 153-164 (2006). https://doi.org/10.1385/ABAB:129:1:153
  8. Song, C., "Fuel Processing for Low-Temperature and High-Temperature Fuel Cells: Challenges, and Opportunities for Sustainable Development in the 21st Century," Catal. Today, 77, 17-49 (2002). https://doi.org/10.1016/S0920-5861(02)00231-6
  9. Li, D., Atake, I., Shishido, T., Oumi, Y., Sano, T., and Takehira, K., "Self-Regenerative Activity of Ni/Mg(Al)O Catalysts with Trace Ru during Daily Startup and Shut-Down Operation of $CH_4$ Steam Reforming," J. Catal., 250, 299-312 (2007). https://doi.org/10.1016/j.jcat.2007.06.002
  10. Juan, J., Roman-Martinez, M., and Illan-Gomez, M., "Effect of Potassium Content in the Activity of K-Promoted Ni/$Al_2O_3$ Catalysts for the Dry Reforming of Methane," Appl. Catal., A., 301, 9-15 (2006). https://doi.org/10.1016/j.apcata.2005.11.006
  11. Li, B., Kado, S., Mukainakano,Y., Miyazawa, T., Miyao, T., and Naito, S., "Surface Modification of Ni Catalysts with Trace Pt for Oxidative Steam Reforming of Methane," J. Catal., 245, 144-155 (2007). https://doi.org/10.1016/j.jcat.2006.10.004
  12. Mukainakano, Y., Li, B., Kado, S., Miyazawa, T., Okumura, K., and Miyao, T., "Surface Modification of Ni Catalysts with Trace Pd and Rh for Oxidative Steam Reforming of Methane," Appl. Catal., A., 318, 252-264 (2007). https://doi.org/10.1016/j.apcata.2006.11.017
  13. Tomishige, K., Asadullah, M., and Kunimori, K., "Novel Catalysts for Gasification of Biomass with High Conversion Efficiency," Catal. Surv. Asia., 7, 219-233 (2003). https://doi.org/10.1023/B:CATS.0000008162.69178.17
  14. Aingeru, R., Beatriz, V., Lide O. A., Andres, T. A., Javier, B., and Ana, G. G., "Hydrogen Production by Steam Reforming of Bio-Oil/Bio-Ethanol Mixtures in an Continuous Thermal-Catalytic Process," Int. J. Hydrogen Energy, 39, 6889-6898 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.137
  15. Fangbai, Z., Ning, W., Lu, Y., Mao, L., and Lihong, H., "Ni-Co Bimetallic MgO-Based Catalysts for Hydrogen Production via Steam Reforming of Acetic Acid from Bio-Oil," Int. J. Hydrogen Energy, 39, 18688-18694 (2014). https://doi.org/10.1016/j.ijhydene.2014.01.025
  16. Kechagiopoulos, P. N., Voutetakis, S. S., Lemonidou, A. A., and Vasalos, I. A., "Hydrogen Production via Steam Reforming of the Aqueous Phase of Bio-Oil in a Fixed Bed Reactor," Energy Fuels, 20, 2155-2163 (2006). https://doi.org/10.1021/ef060083q
  17. Matsumura, Y., and Nakamori, T., "Steam Reforming of Methane over Nickel Catalysts at Low Reaction Temperature," Appl. Catal., A., 258, 107-114 (2004). https://doi.org/10.1016/j.apcata.2003.08.009
  18. Kan, T., Xiong, J., Li, X., Ye, T., Yuan, L., and Torimoto, Y., "High Efficient Production of Hydrogen from Crude Bio-Oil via an Integrative Process between Gasification and Current Enhanced Catalytic Steam Reforming," Int. J. Hydrogen Energy, 35, 518-532 (2010).
  19. Davidian, T., Guilhaume, N., Iojoiu, E., Provendier, H., and Mirodatos, C., "Hydrogen Production from Crude Pyrolysis Oil by a Sequential Catalytic Process," Appl. Catal., B., 73, 116-127 (2007). https://doi.org/10.1016/j.apcatb.2006.06.014
  20. Domine, M. E., Iojoiu, E. E., Davidian, T., Huilhaume, N., and Mirodatos, C., "Hydrogen Production from Biomass-Derived Oil over Monolithic Pt- and Rh-Based Catalysts Using Steam Reforming and Sequential Cracking Processes," Catal. Today, 133-135, 565-573 (2008). https://doi.org/10.1016/j.cattod.2007.12.062
  21. Song, M. K., Pham, H. D., Seon, J., and Woo, H. C., "Marine Brown Algae: A Conundrum Answer for Sustainable Biofuels Production," Renew. Sust. Energ. Rev., 50, 782-792 (2015). https://doi.org/10.1016/j.rser.2015.05.021
  22. Andersson, S., and Wadsley, A. D., "Five Co-Ordinated Titanium in $K_2Ti_2O_5$," Nature, 187, 499-500 (1960). https://doi.org/10.1038/187499a0
  23. Kim, T., Song, K. H., Yoon, G., and Chung, J. S., "Steam Reforming of n-Dodecane over $K_2Ti_2O_5$-added Ni-Alumina and Ni-Zirconia (YSZ) Catalysts," Int. J. Hydrogen Energy, 41, 17922-7932 (2016). https://doi.org/10.1016/j.ijhydene.2016.08.009
  24. Lee, S. Y., Lim, H., and Woo, H. C., "Catalytic Activity and Characterizations of Ni/$K_2Ti_xO_y$-$Al_2O_3$ Catalyst for Steam Methane Reforming," Int. J. Hydrogen Energy, 39, 17645-17655 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.014
  25. Ping, L., Qingli, X., Ming, Z., Lihong, L., Suping, Z., and Yongjie, Y., "Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors," Chem. Eng. Technol., 12, 2021-2028 (2010).
  26. Park, Y. B., Lim, H., and Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. En. Res., 54, 94-100 (2016). https://doi.org/10.9713/kcer.2016.54.1.94
  27. Vizcaino, A. J., Arena, P., Baronetti, G., Carrero, A., Calles, J. A., Laborde, M. A., and Amadeo, N., "Ethanol Steam Reforming on Ni/$Al_2O_3$ Catalysts: Effect of Mg Addition," Int. J. Hydrogen Energy, 33, 3489-3492 (2007).
  28. Swartz, S. L., "Nano-Scale Water-Gas-Shift Catalysts," DOE CRAFT Program (2003).
  29. Dong, W. S., Roh, H. S., Jun, K. W., Park, S. E., and Oh, Y. S., "Methane Reforming over Ni/Ce-$ZrO_2$ Catalysts: Effect of Nickel Content," Appl. Catal., A., 226, 63-72 (2002). https://doi.org/10.1016/S0926-860X(01)00883-3

Cited by

  1. Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons vol.37, pp.6, 2017, https://doi.org/10.1007/s11814-020-0508-3