DOI QR코드

DOI QR Code

흡수정의 유동해석

Flow analysis of the Sump Pump

  • 정한별 (한국폴리텍대학 광주캠퍼스 컴퓨터응용기계과) ;
  • 노승희 (조선이공대학교 기계과)
  • Jung, Han-Byul (Dept. of Computer Aided Mechanical, Gwangju Campus of Korea Polytechnics) ;
  • Noh, Seung-Hee (Department of Mechanical Engineering, Chosun College of Science & Technology)
  • 투고 : 2016.11.29
  • 심사 : 2017.03.10
  • 발행 : 2017.03.31

초록

흡수정은 댐이나 저수지에 저장된 물을 흡입하여 사용하는 설비이다. 흡입한 다량의 물은 화력 및 원자력 등의 대형 발전소의 냉각시스템에 사용된다. 특징으로 흡입 유량과 흡수정의 비가 작으면 흡입구 주변에서 유속이 증가한다. 이로 인해 와류나 선회류의 불균형 유동이 발생된다. 불균형 유동은 흡수정의 성능을 저하나 고장의 원인이 된다. 해결하기 위한 다양한 방법이 고안되고 있으나 최저수위 일 경우 정확한 해결 방법을 찾지 못하고 있다. 가장 효율적인 해결방법으로는 AVD를 설치하거나 관로를 길게하는 방법이 있다. 이렇게 설치된 구조물이 유동의 흐름을 균일하게 만들어 주기 때문이다. 본 논문에서는 관로의 길이와 AVD의 형태 변화에 따른 흡수정 내의 유동특성을 수치해석으로 분석한다. 수치해석을 위하여 수정의 흡입부, 섬프, 펌프의 3단계로 분리하여 모델링하였다. 격자는 해석의 정확도를 위해 흡입부는 비조밀, 흡수정과 AVD는 조밀하게 하였다. ANSYS ICEM-CFD 14.5를 이용하여 120~150만개의 격자를 생성하였고 Tetra grid와 Prism grid를 혼용하였다. 해석을 위해 상용 CFD 프로그램인 ANSYS CFX14.5의 SST 난류모델을 선정하였다. 조건으로 H.W.L 6.0m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s로 설정하였다. 보텍스 각도와 속도분포로 해석한 결과는 다음과 같다. Ext E-type의 AVD를 설치한 흡수정이 최고수위 일때 합격하였다. 추후, Ext E-type을 기본으로 하여 최저수위일 때 만족하는 연구가 필요하다.

sump pump is a system that draws in water that is stored in a dam or reservoir. They are used to pump large amounts of water for cooling systems in large power plants, such as thermal and nuclear plants. However, if the flow and sump pump ratio are small, the flow rate increases around the inlet port. This causes a turbulent vortex or swirl flows. The turbulent flow reduces the performance and can cause failure. Various methods have been devised to solve the problem, but a correct solution has not been found for low water level. The most efficient solution is to install an anti-vortex device (AVD) or increase the length of the sump inlet, which makes the flow uniform. This paper presents a computational fluid dynamics (CFD) analysis of the flow characteristics in a sump pump for different sump inlet lengths and AVD types. Modeling was performed in three stages based on the pump intake, sump, and pump. For accurate analysis, the grid was made denser in the intake part, and the grid for the sump pump and AVD were also dense. 1.2-1.5 million grid elements were generated using ANSYS ICEM-CFD 14.5 with a mixture of tetra and prism elements. The analysis was done using the SST turbulence model of ANSYS CFX14.5, a commercial CFD program. The conditions were as follows: H.W.L 6.0 m, L.W.L 3.5, Qmax 4.000 kg/s, Qavg 3.500 kg/s Qmin 2.500 kg/s. The results of analysis by the vertex angle and velocity distribution are as follows. A sump pump with an Ext E-type AVD was accepted at a high water level. However, further studies are needed for a low water level using the Ext E-type AVD as a base.

키워드

참고문헌

  1. J. P. Tullis, "Modeling in Design of Pumping Pits", J. Hydr. Div., ASCE, vol. 105, no. 9, pp. 1053-1063, 1979.
  2. G. Arboleda, M. El-Fadel, "Effects of Approach Flow Conditions on Pump Sump Design", J. Hydr. Engrg., ASCE, vol. 122, no. 9, pp. 489-494, 1979. DOI: http://doi.org/10.1061/(ASCE)0733-9429(1996)122:9(489)
  3. C. E. Sweeney, R. A. Elder, D. Hay, "Pump Sump Design Experience : Summary", J. Hydr. Div., ASCE, vol. 108, no. 3, pp. 361-377, 1982. DOI: http://doi.org/10.1061/(ASCE)0733-9429(1983)109:8(1178)
  4. M. Padmanabhan, G. E. Hecker, "Scale Effects in Pump Models", J. Hydr. Engrg., ASCE, vol. 110, no. 11, pp. 1540-1556, 1984. DOI: http://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1540)
  5. Korea Water Resources Corporation, "Domestic and International Standards Related to Sump" The KSFM Journal of Fluid Machinery, pp. 53-56, 2005.
  6. ANSI/HI 9.8, "American National Standard for Pump Intake Design", Hydraulic Institute, Parsippany, New Jersey, 1998.
  7. JSME Standard S004-1984, "Standard Method for Model Testing the Performance of a Pump Sump", The Japan Society of Mechanical Engineers, 1984.
  8. V. P. Rajendran, G. S. Constantinescu, V. C. Patel, "Experiments on Flow in a Model Water-pump Intake Sump to Validate a Numerical Model", ASME Fluids Engineering Division Summer Meeting June 21-25 FEDSM98-5098, 1998.
  9. G. Constantinescu, V. C. Patel, "A Numerical Model for Simulation of Pump-intake Flow and Vortices", J. Hydr. Engrg., ASCE, vol. 124, no. 2, pp. 123-134, 1998. DOI: http://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(123)
  10. T. Shibata, R. Iwano, T. Nagahara, T. Okamura, "A Numerical Method for Predicting the Cavitation Inception of a Submerged Vortex in Pump Sumps", The Hydraulic Machinery and Systems 20th IAHR Symposium, CFD-G03, 2000.
  11. Matahel Ansar, Tatsuaki Nakato, George Constantinescu, "Numerical Simulations of Inviscid Three-Dimensional Flows at Single- and Dual-pump intakes", Journal of Hydraulic Research, vol. 40, No. 4, 2002. DOI: https://doi.org/10.1080/00221680209499888
  12. Young-Kyu Park, "A Study on the Behavior of the Vortex in a Pump Sump", Master's Thesis, Mechatronics Engineering Department, Graduate School, Pukyung National University, 2011.
  13. Jong-Woong Choi, No-suk Park, Seong-Su Kim, Sang-Su Park, Young-Ho Lee, "Study on Performance Analysis of Pump within Sump Model with AVD installation by CFD", Journal of Korean Society of Water and Wastewater, vol. 26, No 3, pp. 463-469, June, 2012. DOI: https://doi.org/10.11001/jksww.2012.26.3.463
  14. Jong-Woong Choi, Young-Do Choi , Chang-Goo Kim, Young-Ho Lee, "Flow Uniformity In a Multi-Intake Pump Sump Model", Journal of Mechanical Science and Technology, vol. 24, no. 7, pp. 1389-1400, 2010. DOI: https://doi.org/10.1007/s12206-010-0413-5
  15. Young-Seok Pyo, "Free Surface Vortex Flow Control around Pump Intake with Curtain Wall Installation", Master's Thesis, Interdisciplinary Program of Biomedical Engineering, Pukyung National University, 2014.