DOI QR코드

DOI QR Code

Selective Fluidization of Synaptosomal Plasma Membrane Vesicles by 17β-Estradiol

  • Lee, Sae A (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University) ;
  • Park, Yong Jin (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University) ;
  • Jang, Il Ho (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University) ;
  • Kang, Jung Sook (Department of Oral Biochemistry and Molecular Biology, School of Dentistry, Pusan National University)
  • 투고 : 2016.11.02
  • 심사 : 2016.12.26
  • 발행 : 2017.03.31

초록

Estrogens are effective neuroprotectants in vivo and in vitro. To obtain a better insight into the molecular mechanisms of action of neuroprotection by $17{\beta}-estradiol$ (E2), we examined the differential effects of E2 on the fluidity of synaptosomal plasma membrane vesicles (SPMV) isolated from rat cerebral cortex. Intramolecular excimerization of 1,3-di(1-pyrenyl)-propane (Py-3-Py) was used to investigate the effects of E2 on the bulk and annular lateral diffusion of the SPMV. In addition, we examined the effects of E2 on the rotational diffusion of individual leaflet of SPMV exploiting selective quenching of outer monolayer 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence by trinitrophenyl groups. The $F{\ddot{o}}rster$ distance $R_0$ value for the tryptophan-Py-3-Py donor-acceptor pair was $26.9{\AA}$. E2 increased the lateral mobility of both bulk and annular lipids in SPMV in a dose-dependent manner, but a larger effect on bulk lipids was observed. Although E2 decreased the anisotropy of DPH in SPMV, E2 had a greater fluidizing effect on the outer leaflet compared to the inner leaflet. These results suggest that E2 selectively fluidizes the more fluid regions within SPMV. It is highly probable that E2 mostly fluidizes the bulk lipids, away from either annular lipids or lipid rafts, in the outer leaflet of SPMV. This selective fluidization may be one of the nongenomic mechanisms of neuroprotection by E2.

키워드

참고문헌

  1. Alexander A, Irving AJ, Harvey J. Emerging roles for the novel estrogen-sensing receptor GPER1 in the CNS. Neuropharmacology. 2016. 113: 652-660.
  2. Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids. 2007. 72: 381-405. https://doi.org/10.1016/j.steroids.2007.02.003
  3. Chen RF. Fluorescence quantum yields of tryptophan and tyrosine. Anal Lett. 1967. 1: 35-42. https://doi.org/10.1080/00032716708051097
  4. Dicko A, Morissette M, Ameur BS, Pezolet M, Paolo DT. Effect of estradiol and tamoxifen on brain membranes: investigation by infrared and fluorescence spectroscopy. Brain Res Bull. 1999. 49: 401-405. https://doi.org/10.1016/S0361-9230(99)00066-0
  5. Dobretsov GE, Spirin MM, Chekrygin OV, Karmansky IM, Dmitriev VM, Vladimirov Yu A. A fluorescence study of apolipoprotein localization in relation to lipids in serum low density lipoproteins. Biochim Biophys Acta. 1982. 710: 172-180. https://doi.org/10.1016/0005-2760(82)90147-3
  6. Golden GA, Mason RP, Tulenko TN, Zubenko GS, Rubin RT. Rapid and opposite effects of cortisol and estradiol on human erythrocyte $Na^{+}$, $K^{+}$-ATPase activity: relationship to steroid intercalation into the cell membrane. Life Sci. 1999. 65: 1247-1255. https://doi.org/10.1016/S0024-3205(99)00360-4
  7. Hall JM, Couse JF, Korach KF. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem. 2001. 276: 36869-36872. https://doi.org/10.1074/jbc.R100029200
  8. Kumar P, Taha A, Kale RK, McLean P, Baquer NZ. Protective effects of $17{\beta}$ estradiol on altered age related neuronal parameters in female rat brain. Neurosci Lett. 2011. 502: 56-60. https://doi.org/10.1016/j.neulet.2011.07.024
  9. Lakowicz JR. Principles of fluorescence spectroscopy. 2006.
  10. Liu R, Yang SH. Window of opportunity: estrogen as a treatment for ischemic stroke. Brain Res. 2013. 1514: 83-90. https://doi.org/10.1016/j.brainres.2013.01.023
  11. Lowry OH, Rosebrough NR., Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951. 193: 265-275.
  12. Manavathi B, Kumar R. Steering estrogen signals from the plasma membrane to the nucleus: two sides of the coin. J Cell Physiol. 2006. 207: 594-604. https://doi.org/10.1002/jcp.20551
  13. Maselli A, Pierdominici M, Vitale C, Ortona E. Membrane lipid rafts and estrogenic signaling: a functional role in the modulation of cell homeostasis. Apoptosis. 2015. 20: 671-678. https://doi.org/10.1007/s10495-015-1093-5
  14. McCullough LD, Hurn PD. Estrogen and ischemic neuroprotection: an integrated view. Trends Endocrinol Metab. 2003. 14: 228-235. https://doi.org/10.1016/S1043-2760(03)00076-6
  15. Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta. 2014. 1838: 1451-1466. https://doi.org/10.1016/j.bbamem.2013.10.019
  16. Patra SK. Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim Biophys Acta. 2008. 1785: 182-206.
  17. Pralle A, Keller P, Florin EL, Simons K, Hrber JK. Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000. 148: 997-1008. https://doi.org/10.1083/jcb.148.5.997
  18. Radda GK. Fluorescence probes in membrane studies in methods in membrane biology, biophysical approaches. Plenum Press. 1975. 4: 97-188.
  19. Raz L, Khan MM, Mahesh VB, Vadlamudi RK, Brann DW. Rapid estrogen signaling in the brain. Neurosignals. 2008. 16: 140-153. https://doi.org/10.1159/000111559
  20. Schroeder F, Morrison WJ, Gorka C, Wood WG. Transbilayer effects of ethanol on fluidity of brain membrane leaflets. Biochim Biophys Acta. 1988. 946: 85-94. https://doi.org/10.1016/0005-2736(88)90460-9
  21. Schwartz Z, Gates PA, Nasatzky E, Sylvia VL, Mendez J, Dean DD, Boyan BD. Effect of $17{\beta}$-estradiol on chondrocyte membrane fluidity and phospholipid metabolism is membranespecific, sex-specific, and cell maturation-dependent. Biochim Biophys Acta. 1996. 1282: 1-10. https://doi.org/10.1016/0005-2736(96)00019-3
  22. Shivaji S, Jagannadham MV. Steroid-induced perturbations of membranes and its relevance to sperm acrosome reaction. Biochim Biophys Acta. 1992. 1108: 99-109. https://doi.org/10.1016/0005-2736(92)90119-7
  23. Simons K, Ikonen E. Functions rafts in cell membranes. Nature. 1997. 387: 569-572. https://doi.org/10.1038/42408
  24. Sweet WD, Wood WG, Schroeder F. Charged anesthetics selectively alter plasma membrane order. Biochemistry. 1987. 26: 2828-2835. https://doi.org/10.1021/bi00384a026
  25. Tahara Y, Murata M, Ohnishi S, Fujiyoshi Y, Kikuchi M, Yamamoto Y. Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes. Biochemistry. 1992. 31: 8747-8754. https://doi.org/10.1021/bi00152a010
  26. Tsuda K, Kinoshita Y, Kimura K, Nishio I, Masuyama Y. Electron paramagnetic resonance investigation on modulatory effect of $17{\beta}$-estradiol on membrane fluidity of erythrocytes in postmenopausal women. Arterioscler Thromb Vasc Biol. 2001. 21: 1306-1312. https://doi.org/10.1161/hq0801.093507
  27. Whiting KP, Brain PF, Restall CJ. Steroid hormone induced effects on membrane fluidity. Biochem Soc Trans. 1995. 23: 438. https://doi.org/10.1042/bst023438s
  28. Whiting KP, Restall CJ, Brain PF. Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci. 2000. 67: 743-757. https://doi.org/10.1016/S0024-3205(00)00669-X
  29. Yun I, Kang JS. The general lipid composition and aminophospholipid asymmetry of synaptosomal plasma membrane vesicles isolated from bovine cerebral cortex. Mol Cells. 1990. 1: 15-20.
  30. Zhu D, Bungart BL, Yang X, Zhumadilov Z, Lee JC, Askarova S. Role of membrane biophysics in Alzheimer's-related cell pathways. Front Neurosci. 2015. 9: 186.