DOI QR코드

DOI QR Code

Effects of Cyclic Thermal Load on the Signal Characteristics of FBG Sensors Packaged with Epoxy Adhesives

주기적인 반복 열하중이 패키징된 FBG 센서 신호 특성에 미치는 영향

  • Kim, Heonyoung (Advanced Materials Research Team, Korea Railroad Research Institute) ;
  • Kang, Donghoon (Advanced Materials Research Team, Korea Railroad Research Institute)
  • 김헌영 (한국철도기술연구원 첨단소재연구팀) ;
  • 강동훈 (한국철도기술연구원 첨단소재연구팀)
  • Received : 2016.09.08
  • Accepted : 2016.12.09
  • Published : 2017.04.01

Abstract

Fiber optics sensors that have been mainly applied to aerospace areas are now finding applicability in other areas, such as transportation, including railways. Among the sensors, the fiber Bragg grating (FBG) sensors have led to a steep increase due to their properties of absolute measurement and multiplexing capability. Generally, the FBG sensors adhere to structures and sensing modules using adhesives such as an epoxy. However, the measurement errors that occurred when the FBG sensors were used in a long-term application, where they were exposed to environmental thermal load, required calibration. For this reason, the thermal curing of adhesives needs to be investigated to enhance the reliability of the FBG sensor system. This can be done at room temperature through cyclic thermal load tests using four types of specimens. From the test results, it is confirmed that residual compressive strain occurs to the FBG sensors due to an initial cyclic thermal load. In conclusion, signals of the FBG sensors need to be stabilized for applying them to a long-term SHM.

광섬유 센서는 전자기 간섭에 독립적이고 원거리 계측이 가능하여 다양한 분야에 적용되고 있다. 특히, 광섬유 브래그 격자(FBG) 센서는 다중화, 절대측정이 가능하여 구조 건전성 모니터링(SHM)을 위해 널리 사용되고 있다. 일반적으로, FBG 센서는 에폭시와 같은 접착제를 이용하여 구조물에 직접 부착 및 모듈 제작을 통해 적용한다. 하지만, 에폭시로 부착된 FBG 센서 기반의 장시간 모니터링 과정에서 신호 변화가 발생하여 보정이 요구된다. 이는 계절적 요인으로써 장시간 온도 변화 환경에 노출되어 센서의 접착구조 변형에 의한 결과이며, 센서 접착제의 열경화 과정에 대한 규명이 필요하다. 본 연구에서는, 패키징 방식 4가지 경우의 FBG 센서 시편을 제작하고, 반복 열하중 시험을 수행하였다. 시험 결과, 상온경화 과정에서 미소한 잔류 압축 변형률이 발생하였고, 반복 열하중 초기단계에서 수백 ${\mu}{\varepsilon}$의 압축 변형률이 인가되어 유지되었다. 이를 통해 FBG를 이용한 장시간 SHM을 위해서는 FBG 센서의 신호에 대한 안정화 과정이 필요함을 확인하였다.

Keywords

References

  1. Chung, W. and Kang, D., 2008, "Full-scale Test of a Concrete Box Girder using FBG Sensing System," Engineering Structures, Vol. 30, No. 3, pp. 643-652. https://doi.org/10.1016/j.engstruct.2007.05.003
  2. Kang, D., Kim, D. H. and Jang, S., 2014, "Design and Development of Structural Health Monitoring System for Smart Railroad-gauge-facility using FBG Sensors," Experimental Techniques, Vol. 38, No. 5, pp. 39-47. https://doi.org/10.1111/j.1747-1567.2012.00844.x
  3. Ihn, J. B. and Chang, F. K., 2008, "Pitch-catch Active Sensing Methods in Structural Health Monitoring for Aircraft Structures," Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19. https://doi.org/10.1177/1475921707081979
  4. Lee, J. H., Kim, D. H. and Park, I. K., 2014, "Application of a Fiber Fabry-Perot Inter- ferometer Sensor for Receiving SH-EMAT Signals," Journal of the Korean Society for Nondestructive Testing, Vol. 34, No. 2, pp. 165-170. https://doi.org/10.7779/JKSNT.2014.34.2.165
  5. Kim, D. H. and Feng, M. Q., 2007, "Real-time Structural Health Monitoring using a Novel Fiberoptic Accelerometer System," IEEE Sensors Journal, Vol. 7, No 4, pp. 536-543. https://doi.org/10.1109/JSEN.2007.891988
  6. Kim, H. Y. and Kim, D. H., 2015, "Sensor System for Multi-Point Monitoring Using Bending Loss of Single Mode Optical Fiber," Journal of the Korean Society for Nondestructive Testing, Vol. 35, No. 1, pp. 39-45. https://doi.org/10.7779/JKSNT.2015.35.1.39
  7. Grillet, A., Kinet, D., Witt, J., Schukar, M., Krebber, K., Pirotte, F. and Depre, A., 2008, "Optical Fiber Sensors Embedded into Medical Textiles for Healthcare Monitoring," IEEE Sensors Journal, Vol. 8, No. 7, pp. 1215-1222. https://doi.org/10.1109/JSEN.2008.926518
  8. Kang, D. H., Kim, C. U. and Kim, C. G., 2006, "The Embedment of Fiber Bragg Grating Sensors into Filament Wound Pressure Tanks Considering Multiplexing," NDT&E International, Vol. 39, pp. 109-116. https://doi.org/10.1016/j.ndteint.2005.07.013
  9. Chung, W. and Kang, D., 2012, "Application of FBG Sensors for Monitoring of Railroad Bridge," Journal of the Korea Concrete Institute, Vol. 24, No. 3, pp. 25-28. https://doi.org/10.4334/JKCI.2012.24.1.025
  10. Rao, Y. J., Webb, D. J., Jackson, D. A., Zhang, L. and Bennion, I., 1997, "In-fiber Bragg-grating Temperature Sensor System for Medical Applications," Journal of Lightwave Technology, Vol. 15, No. 5, pp. 779-785. https://doi.org/10.1109/50.580812
  11. Kang, D., Kim, H. Y. and Kim, D. H., 2014, "Enhancing Thermal Reliability of Fiber-optic sensors for Bio-inspired Applications at Ultra-high Temperatures," Smart Materials and Structures, Vol. 23, No. 7, p. 074012. https://doi.org/10.1088/0964-1726/23/7/074012
  12. Kang, D., Kim, H. Y., Kim, D. H. and Park, S., 2016, "Thermal Characteristics of FBG Sensors at Cryogenic Temperatures for Structural Health Monitoring," International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 1, pp. 5-9. https://doi.org/10.1007/s12541-016-0001-4
  13. Kang, D., Park, S. O., Hong, C. S. and Kim, C. G., 2005, "The Signal Characteristics of Reflected Spectra of Fiber Bragg Grating Sensors with Strain Gradients and Grating Lengths," NDT&E International, Vol. 38, No. 8, pp. 712-718. https://doi.org/10.1016/j.ndteint.2005.04.006
  14. Kim, H. Y., Kang, D. and Kim, D. H., 2016, "Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 3, pp. 225-230. https://doi.org/10.7779/JKSNT.2016.36.3.225
  15. Kang, D., Kim, H. Y. and Kim, D. H., 2016, "Evaluation of Signal Stability of Fiber Optic Sensors with respect to Sensor Packaging Methods in Long-Term Monitoring," Journal of the Korean Society for Nondestructive Testing, Vol. 36, No. 4, pp. 281-287. https://doi.org/10.7779/JKSNT.2016.36.4.281