DOI QR코드

DOI QR Code

Study on the Acoustic Modes of a Short, Thick, Asymmetric Cylinder

비대칭 특성을 가진 짧은 후판 실린더의 음향 방사 모드에 관한 연구

  • Lee, Hyeongill (School of Automotive Engineering, Kyung-pook National University)
  • Received : 2017.01.12
  • Accepted : 2017.02.23
  • Published : 2017.04.20

Abstract

This study investigates vibro-acoustic characteristics of a short, thick cylinder containing a slot given a pined-free boundaries. Using the finite element analysis results, structural modes of the asymmetric cylinder (with a slot) are expressed as the linear combinations of modes of the symmetric cylinder made of same material with identical geometry except the slot. Based on synthesized modal vibrations, acoustic modes of the asymmetric cylinder are obtained with two approaches, i.e., Rayleigh integral calculation and modal expansion of the acoustic modes of the symmetric cylinder. Also, acoustic powers, max. sound pressure and directivity pattern are obtained from acoustic modes and verified with the boundary element analyses. Based on these results, the accuracy of proposed approaches in calculating the vibro-acoustic properties of a short, thick, asymmetric cylinder has been confirmed. The procedure can be applied to the similar cylinders with other boundaries or asymmetric properties. Also, attenuation of vibration and/or sound radiation of the cylinder type practical components can be studied using these approaches.

단순지지-자유 경계조건과 좁은 슬롯을 포함한 짧은 후판 실린더의 음향방사 특성을 검토하였다. 유한요소 해석을 통해 얻어진 샘플 실린더(슬롯 포함)의 진동 모드를 동일한 치수의 슬롯이 없는 균일 실린더의 진동 모드들의 선형 합으로 근사화하였다. 이렇게 얻어진 근사적인 진동 모드를 기준으로 (1) 레일리 적분을 이용한 직접 계산, (2) 균일 실린더의 음향 모드들을 이용한 모드전개법 등 두 방법을 적용하여 샘플 실린더의 음향 모드들을 정의하였다. 이 결과를 이용하여 음향파워, 최대음압, 지향성 선도 등 부가적인 특성을 계산한 다음, 전체 결과를 경계요소법을 이용한 수치해석 결과와 비교하여 검증하였다. 이 결과를 바탕으로, 제시된 두 가지 방법을 이용하여 짧은 비대칭 후판 실린더의 음향방사 특성을 비교적 정확하게 예측할 수 있음을 알 수 있다. 이 방법들은 다른 형태의 비대칭성 및 경계조건을 가진 실린더에도 확대 적용 가능할 것으로 판단되며 이를 통해 실린더 형태의 실제 부품들에서 방사되는 소음을 저감방안 도출도 가능할 것으로 기대된다.

Keywords

References

  1. Mote, C. D. Jr., 1972, Stability Control Analysis of Rotating Plates by Finite Element: Emphasis on Slots and Holes, Journal of Dynamic Systems, Measurement, and Control, March, Vol. 94, No. 1, pp. 64-70. https://doi.org/10.1115/1.3426545
  2. Honda, Y., Matsuhisa, H. and Sato, S., 1985, Modal Response of a Disc to A Moving Concentrated Harmonic Force, Journal of Sound and Vibration, Vol. 102, No. 4, pp. 457-472. https://doi.org/10.1016/S0022-460X(85)80107-3
  3. Yu, R. C. and Mote, C. D. Jr., 1987, Vibration and Parametric Excitation in Asymmetric Circular Plates under Moving Load, Journal of Vibration and Acoustics, Vol. 119, No. 3, pp. 409-427.
  4. Shen, I. Y. and Mote, C. D. Jr., 1992, Dynamic Analysis of Finite Linear Elastic Solids Containing Small Elastic Imperfections: Theory with Application to Asymmetric Circular Plates, Journal of Sound and Vibration, Vol. 155, No. 3, pp. 443-465. https://doi.org/10.1016/0022-460X(92)90711-6
  5. Rim, K. H. and Mote, C. D. Jr., 1999, Unstable Phenomenon for High-speed Rotating Circular Saws, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 9, No. 6, pp. 1210-1217.
  6. Lee, H., 2009, Modal Vibration Characteristics of an Annular Disc Containing Evenly Spaced Narrow Radial Slots, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19, No. 6, pp. 560-568. https://doi.org/10.5050/KSNVN.2009.19.6.560
  7. Lee, H., 2009, Vibro-Acoustic Characteristics of An Annular Disc with Narrow Radial Slots, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 6, pp. 560-568.
  8. Gladwell, G. M. and Vijay, D. K., 1975, Natural Frequencies of Free Finite Length Circular Cylinders, Journal of Sound and Vibration, Vol. 42, No. 3, pp. 387-397. https://doi.org/10.1016/0022-460X(75)90252-7
  9. So, J. and Leissa, A. W., 1997, Free Vibration of Thick Hollow Circular Cylinders from Three-dimensional Analysis, Journal of Vibration and Acoustics, Vol. 119, No. 1, pp. 89-95. https://doi.org/10.1115/1.2889692
  10. Hutchinson, J. R. and El-Azhari, 1986, Vibrations of free hollow circular cylinders, Journal of Applied Mechanics, Vol. 53, No. 3, pp. 641-646. https://doi.org/10.1115/1.3171824
  11. Singal, K. and Williams, K., 1988, A Theoretical and Experimental Study of Vibrations of Thick Circular Cylindrical Shell and Rings, Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 110, No. 4, pp. 533-537. https://doi.org/10.1115/1.3269562
  12. Wang, H. and Williams, K., 1996, Vibrational Modes of Tthick Cylinders of Finite Length, Journal of Sound and Vibration, Vol. 191, No. 5, pp. 955-971. https://doi.org/10.1006/jsvi.1996.0165
  13. Zhou, D., Cheung, Y. K., Lo, S. H. and Au, F. T. K., 2003, 3D Vibration Analysis of Solid and Hollow Circular Cylinders via Chebyshev-Ritz Method, Computer Methods in Applied Mechanics and Engineering, Vol. 192, No. 13-14, pp. 1575-1589. https://doi.org/10.1016/S0045-7825(02)00643-6
  14. Mofakhami, M. R., Toudeshky, H. H. and Hashemi, S. H., 2006, Finite Cylinder Vibrations with Different End Boundary Conditions, Journal of Sound and Vibration, Vol. 297, No. 1-2, pp. 293-314. https://doi.org/10.1016/j.jsv.2006.03.041
  15. Sohn, J. W., Kwon, O. C. and Choi, S. B., 2009, Modal Characteristics and Vibration Control of Cylindrical Shell Structure : Experimental Results Comparison in the Air and Water, Transactions of Korean Society for Noise and Vibration Engineering, Vol. 19, No. 9, pp. 899-906. https://doi.org/10.5050/KSNVN.2009.19.9.899
  16. Sandman, B. E., 1976, Fluid Loading Influence Coefficients for A Finite Cylindrical Shell, Journal of the Acoustical Society of America, Vol. 60, No. 6, pp. 1256-1264. https://doi.org/10.1121/1.381238
  17. Junger, M. C. and Feit, D., 1985, Sound, Structures, and Their Interactions, MIT Press, New York.
  18. Hong, J. S. and Lee, J. M., 1990, A Study on the Analysis of Acoustic Radiation of Axisymmetric Shells, Transactions of Korean Society for Mechanical Engineering, Vol. 14, No. 4, pp. 797-802.
  19. Lin, T. R., Mechefske, C. and O'Shea, P., 2011, Characteristics of Modal Sound Radiation of Finite Cylindrical Shells, Journal of Vibration and Acoustics, Vol. 133, No. 5, pp. 95-100.
  20. Lee, H., 2005, Acoustic Radiation from Radial Vibration Modes of a Thick Annular Disc, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 15, No. 4, pp. 225-239. https://doi.org/10.5050/KSNVN.2005.15.2.225
  21. Lee, H., 2013, Acoustic Radiation from the Modal Vibrations of a Thick, Finite Cylinder with Various Boundary Conditions, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 23, No. 7, pp. 585-596. https://doi.org/10.5050/KSNVE.2013.23.7.585
  22. UGS Corp., 2006, I-DEAS User's Manual Version 11.
  23. NIT, 2005, SYSNOISE User's Manual Revision 5.6.