DOI QR코드

DOI QR Code

Fabrication of Single Capacitive type Differential pressure sensor for Differential Flow meter

차압식 유량계를 실장을 위한 Single Capacitive Type Differential 압력 센서 개발

  • Shin, Kyu-Sik (Smart Sensor Research Center of Korea Electronics Technology Institute) ;
  • Song, Sangwoo (Smart Sensor Research Center of Korea Electronics Technology Institute) ;
  • Lee, Kyungil (Smart Sensor Research Center of Korea Electronics Technology Institute) ;
  • Lee, Daesung (Smart Sensor Research Center of Korea Electronics Technology Institute) ;
  • Jung, Jae Pil (Department of Materials Science and Engineering, University of Seoul)
  • 신규식 (전자부품연구원 스마트센서 연구센터) ;
  • 송상우 (전자부품연구원 스마트센서 연구센터) ;
  • 이경일 (전자부품연구원 스마트센서 연구센터) ;
  • 이대성 (전자부품연구원 스마트센서 연구센터) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2016.12.09
  • Accepted : 2017.03.16
  • Published : 2017.03.31

Abstract

In this paper, we have developed a differential pressure flow sensor designed as a single capacitive type. And the sensor was fabricated using a MEMS process. Differential pressure flow sensors are the most commonly used sensors for industrial applications. The sensing diaphragm and bonding joint of the MEMS pressure sensor are easily broken at high pressure. In this paper, we proposed a structure in which the diaphragm of the sensor was not broken at a pressure exceeding the proof pressure, and the differential pressure sensor was designed and manufactured accordingly. The operating characteristics of the sensor were evaluated at a pressure three times higher than the sensor operating pressure (0-3 bar). The developed sensor was $3.0{\times}3.0mm$ and measured with a LCR meter (HP 4284a) at a pressure between 0 and 3 bar. It showed 3.67 pF at 0 bar and 5.13 pF at 3 bar. The sensor operating pressure (0-3 bar) developed a pressure sensor with hysteresis of 0.37%.

최근 계측기의 소형화, 전자화에 따라 차압식 유량계의 경우 기존에 기계가공을 통해 개발하던 센서부를 전자식 MEMS 차압센서로 대체하려는 많은 노력이 있으나, MEMS 차압센서의 경우 고압이 인가시 실리콘 다이아프램의 파괴 및 센서의 접합부의 파괴가 발생하는 문제점이 있다. 따라서 본 논문에서는 proof pressure 이상의 압력에서 센서의 다이아프램이 파괴되지 않는 구조를 제안하였으며, 그에 따른 차압식 압력센서를 설계 및 제작하였다. 센서 동작압력(0-3 bar)의 3배 이상의 압력에서 센서의 동작특성을 평가하였다. 개발된 센서는 $3.0{\times}3.0mm$이며, 0~3 bar 사이의 압력에서 LCR meter (HP 4284a)로 측정한 결과 3.67 pF at 0bar, 5.13 pF at 3 bar를 나타내었으며, 센서의 동작압력(0-3 bar)에서 0.37%의 hysteresis를 나타내는 압력센서를 개발하였다.

Keywords

References

  1. S. D. Nguyen, I. Paprotny, P. K. Wright, and R. M. White, "MEMS capacitive flow sensor for natural gas pipelines", Sensors and Actuators A:Physical, 231, 28 (2015). https://doi.org/10.1016/j.sna.2014.10.013
  2. S. T. Moe, K. S. Henriksen, D. T. Wang, E. Lund, J. Nysather, L. Furuberg, M. Visser, T. Fallet, and R. W. Bernstein, "Capacitive differential pressure sensor for harsh environments", Sensors and Actuators, 83, 30 (2000). https://doi.org/10.1016/S0924-4247(99)00374-X
  3. R. Sood, M. Kaur, and H. Lenka, "Design and development of automatic water flow meter", International Journal of Computer Science, Engineering and Applications(IJCSEA), 3(3), 49 (2013). https://doi.org/10.5121/ijcsea.2013.3306
  4. M. Shanmugavalli, G. Uma, and M. Umapathy, "Uncertainty analysis of micro differential pressure sensor using interval analysis", International Jour-nal on Smart Sensing and Inteligent Systems, 2(3), 463 (2009.) https://doi.org/10.21307/ijssis-2017-361
  5. P. Eswaran, S. Malavizhi, "Design Analysis of MEMS Capacitive Differential pressure sensor for Aircraft Altimeter", International Journal of Applied Physics and Mathematics, 2(1), 14 (2012.)
  6. M. H. Lee, H. Y. Lee, Y. N. Liaw, I. K. Lao, and I. M. Hsing, "Detailed characterization of anodic bonding process between glass and thin-film coated silicon substrates", Sensors and Actuators, 86(1), 103 (2000). https://doi.org/10.1016/S0924-4247(00)00418-0
  7. L. Chen, M. Mehregany, "A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement", Sensors and Actuators A: Physical, 2-8, 145 (2008).
  8. E. S. Hwang, S. M. Choi, B. K. Joo, and Y. J. Kim "Flexible Module Packaging using MEMS technology", Proc. International Microelectronics and Packaging Society Conference, 74 (2002).
  9. S. H. Choa, W. B. Kim, M. S. Choi, J. S. Kim, and C. M. Song, "Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor", J. Microelectron. Packag. Soc., 10(3), 57 (2003).

Cited by

  1. IoT 센서를 활용한 미세먼지 분석 기술 개발 vol.21, pp.1, 2017, https://doi.org/10.7236/jiibc.2021.21.1.121