DOI QR코드

DOI QR Code

Characteristics of Nano-Sized, α-2ZrO2·P2O5 Powder Prepared by Polyvinyl Alcohol Solution Method

Polyvinyl Alcohol 용액법에 의해 제조된 나노크기 α-2ZrO2·P2O5 분말의 특성 연구

  • Ma, Chung-Il (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • 마충일 (국립목포대학교 신소재공학과) ;
  • 이상진 (국립목포대학교 신소재공학과)
  • Received : 2017.02.20
  • Accepted : 2017.03.07
  • Published : 2017.04.27

Abstract

$2ZrO_2{\cdot}P_2O_5$ powder, which is not synthesized by solid reaction method, was successfully synthesized through PVA solution method. In this process, the firing temperature and the PVA content strongly affected the crystallization behavior and final particle size. A stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ was synthesized at a firing temperature of $1200^{\circ}C$ and holding time of 4 h. ${\beta}$-phase $2ZrO_2{\cdot}P_2O_5$ was observed, with un-reacted $ZrO_2$ phases, for firing temperatures lower than $1200^{\circ}C$. In terms of the PVA content effect, the powder prepared with a PVA mixing ratio of 12:1 showed stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$; however, the ${\beta}$-phase was found to co-exist at relatively higher PVA content. The synthesized ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ powder showed an average particle size of 100~250 nm and an average thermal expansion coefficient of $-2.5{\times}10^{-6}/^{\circ}C$ in the range of room temp. ${\sim}800^{\circ}C$.

Keywords

References

  1. I. Yamai and T. Oota, J. Am. Ceram. Soc., 68, 273 (1985). https://doi.org/10.1111/j.1151-2916.1985.tb15321.x
  2. I. Yamai, T. Ota, Y. Kurita and S. Koishi, J. Ceram. Soc. Japan, 97, 447 (1989). https://doi.org/10.2109/jcersj.97.447
  3. S. Udagawa and H. Ikawa, Bull. Ceram. Soc. Japan, 14, 967 (1979).
  4. T. Isobe, T. Umezome, Y. Kameshima, A. Nakajima and K. Okada, Mater. Res. Bull., 44, 2045 (2009). https://doi.org/10.1016/j.materresbull.2009.07.020
  5. J. S. O. Evans, T. A. Mary and A. W. Sleight, J. Solid State Chem., 120, 101 (1995). https://doi.org/10.1006/jssc.1995.1383
  6. S. J. Lee and W. M. Kriven, J. Am. Ceram. Soc., 81, 2605 (1998).
  7. S. J. Lee, E. A. Benson and W. M. Kriven, J. Mater. Res., 82, 2049 (1999).
  8. M. H. Nguyen, S. J. Lee and W. M. Kriven, J. Mater. Res., 14, 3417 (1999). https://doi.org/10.1557/JMR.1999.0462
  9. D. A. Fumo, M. R. Morelli and A. M. Segadaes, Mater. Res. Bull., 31, 1243 (1996). https://doi.org/10.1016/0025-5408(96)00112-2
  10. I. Nettleship, J. L. Shull and W. M. Kriven, J. Euro. Ceram. Soc., 11, 291 (1993). https://doi.org/10.1016/0955-2219(93)90028-P
  11. Y. M. Han, S. J. Lee, Y. K. Kim and C. H. Jung, J. Nanosci. Nanotechnol., 16, 1672 (2016). https://doi.org/10.1166/jnn.2016.11958
  12. S. J. Lee and C. H. Jung, J. Nanosci. Nanotechnol., 12, 800 (2012). https://doi.org/10.1166/jnn.2012.5352