DOI QR코드

DOI QR Code

Density Functional Theory Studies of Oxygen Affinity of Small Au Nanoparticles

  • Ha, Hyunwoo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Shin, Kihyun (Department of Materials Science and Engineering, KAIST) ;
  • Kim, Hyun You (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2016.12.12
  • Accepted : 2017.02.17
  • Published : 2017.04.27

Abstract

Through density functional theory calculations, to provide insight into the origins of the catalytic activity of Au nanoparticles (NPs) toward oxidation reactions, we have scrutinized the oxygen adsorption chemistry of 9 types of small unsupported Au NPs of around 1 nm in size (Au13, Au19, Au20, Au25, Au38, and Au55) looking at several factors (size, shape, and coordination number). We found that these NPs, except for the icosahedral Au13, do not strongly bind to $O_2$ molecules. Energetically most feasible $O_2$ adsorption that potentially provides high CO oxidation activity is observed in the icosahedral Au13, our smallest Au NP. In spite of the chemical inertness of bulk Au, the structural fluxionality of such very small Au NP enables strong $O_2$ adsorption. Our results can support recent experimental findings that the exceptional catalytic activity of Au NPs comes from very small Au species consisting of around 10 atoms each.

Keywords

References

  1. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett., 16, 405 (1987). https://doi.org/10.1246/cl.1987.405
  2. M. Haruta, Gold Bull., 37, 27 (2004). https://doi.org/10.1007/BF03215514
  3. L. Barrio, P. Liu, J. A. Rodriguez, J. M. Campos-Martin and J. L. G. Fierro, J. Chem. Phys., 125, 164715 (2006). https://doi.org/10.1063/1.2363971
  4. M. S. Chen and D. W. Goodman, Science, 306, 252 (2004). https://doi.org/10.1126/science.1102420
  5. H. Falsig, B. Hvolbaek, I. S. Kristensen, T. Jiang, T. Bligaard, C. H. Christensen and J. K. Norskov, Angew. Chem. Int. Ed., 47, 4835 (2008). https://doi.org/10.1002/anie.200801479
  6. T. Fujitani, I. Nakamura, T. Akita, M. Okumura and M. Haruta, Angew. Chem. Int. Ed., 48, 9515 (2009). https://doi.org/10.1002/anie.200905380
  7. H. Hakkinen, S. Abbet, A. Sanchez, U. Heiz and U. Landman, Angew. Chem. Int. Ed., 42, 1297 (2003). https://doi.org/10.1002/anie.200390334
  8. B. C. Han, C. R. Miranda and G. Ceder, Phys. Rev. B, 77, 075410 (2008). https://doi.org/10.1103/PhysRevB.77.075410
  9. T. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei and M. Haruta, Angew. Chem. Int. Ed., 47, 9265 (2008) https://doi.org/10.1002/anie.200802845
  10. A. Roldan, S. Gonzalez, J. M. Ricart and F. Illas, Chem-PhysChem, 10, 348 (2009).
  11. M. Valden, X. Lai and D. W. Goodman, Science, 281, 1647 (1998). https://doi.org/10.1126/science.281.5383.1647
  12. B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. von Issendorff, H. Hakkinen, M. Moseler and U. Landman, ChemPhysChem, 8, 157 (2007). https://doi.org/10.1002/cphc.200600524
  13. S. Chretien and H. Metiu, J. Chem. Phys., 127, 244708 (2007). https://doi.org/10.1063/1.2806802
  14. S. Chretien and H. Metiu, J. Chem. Phys., 126, 104701 (2007). https://doi.org/10.1063/1.2709886
  15. J. Graciani, A. Nambu, J. Evans, J. A. Rodriguez and J. F. Sanz, J. Am. Chem. Soc., 130, 12056 (2008). https://doi.org/10.1021/ja802861u
  16. Z. P. Liu, X. Q. Gong, J. Kohanoff, C. Sanchez and P. Hu, Phys. Rev. Lett., 91, 266102 (2003). https://doi.org/10.1103/PhysRevLett.91.266102
  17. L. M. Molina and B. Hammer, J. Chem. Phys., 123, 161104 (2005). https://doi.org/10.1063/1.2110195
  18. J. A. Rodriguez, J. Evans, J. Graciani, J. B. Park, P. Liu, J. Hrbek and J. F. Sanz, J. Phys. Chem. C, 113, 7364 (2009). https://doi.org/10.1021/jp900483u
  19. B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai and U. Heiz, Science, 307, 403 (2005). https://doi.org/10.1126/science.1104168
  20. Z. P. Liu, P. Hu and A. Alavi, J. Am. Chem. Soc., 124, 14770 (2002). https://doi.org/10.1021/ja0205885
  21. L. M. Molina, M. D. Rasmussen and B. Hammer, J. Chem. Phys., 120, 7673 (2004). https://doi.org/10.1063/1.1687337
  22. I. N. Remediakis, N. Lopez and J. K. Norskov, Angew. Chem. Int. Ed., 44, 1824 (2005). https://doi.org/10.1002/anie.200461699
  23. H. Y. Kim, H. M. Lee and G. Henkelman, J. Am. Chem. Soc., 134, 1560 (2012). https://doi.org/10.1021/ja207510v
  24. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 4, 216 (2013). https://doi.org/10.1021/jz301778b
  25. H. Y. Kim and G. Henkelman, J. Phys. Chem. Lett., 3, 2194 (2012). https://doi.org/10.1021/jz300631f
  26. M. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero and C. B. Murray, Science, 341, 771 (2013). https://doi.org/10.1126/science.1240148
  27. A. A. Herzing, C. J. Kiely, A. F. Carley, P. Landon and G. J. Hutchings, Science, 321, 1331 (2008). https://doi.org/10.1126/science.1159639
  28. G. Hutchings, Nat. Chem., 1, 584 (2009). https://doi.org/10.1038/nchem.388
  29. S. Lee, L. M. Molina, M. J. Lopez, J. A. Alonso, B. Hammer, B. Lee, S. Seifert, R. E. Winans, J. W. Elam, M. J. Pellin and S. Vajda, Angew. Chem. Int. Ed., 48, 1467 (2009). https://doi.org/10.1002/anie.200804154
  30. M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. Berenguer-Murcia, M. S. Tikhov, B. F. G. Johnson and R. M. Lambert, Nature, 454, 981 (2008). https://doi.org/10.1038/nature07194
  31. X. -F. Yang, A. Wang, B. Qiao, J. Li, J. Liu and T. Zhang, Acc. Chem. Res., 46, 1740 (2013). https://doi.org/10.1021/ar300361m
  32. J. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Dominguez, A. Leyva-Perez and A. Corma, Science, 338, 1452 (2012). https://doi.org/10.1126/science.1227813
  33. H. An, S. Kwon, H. Ha, H. Y. Kim and H. M. Lee, J. Phys. Chem. C, 120, 9292 (2016).
  34. W. Song and E. J. M. Hensen, Catal. Sci. Technol., 3, 3020 (2013). https://doi.org/10.1039/c3cy00319a
  35. W. Song and E. J. M. Hensen, ACS Catal., 4, 1885 (2014). https://doi.org/10.1021/cs401206e
  36. R. M. Olson, S. Varganov, M. S. Gordon, H. Metiu, S. Chretien, P. Piecuch, K. Kowalski, S. A. Kucharski and M. Musial, J. Am. Chem. Soc., 127, 1049 (2005). https://doi.org/10.1021/ja040197l
  37. X. P. Xing, B. Yoon, U. Landman and J. H. Parks, Phys. Rev. B, 74, 165423 (2006). https://doi.org/10.1103/PhysRevB.74.165423
  38. J. Li, X. Li, H.-J. Zhai and L.-S. Wang, Science, 299, 864 (2003). https://doi.org/10.1126/science.1079879
  39. P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer and A. Fielicke, Science, 321, 674 (2008). https://doi.org/10.1126/science.1161166
  40. A. Roldan, J. M. Ricart and F. Illas, Theor. Chem. Acc., 123, 119 (2009). https://doi.org/10.1007/s00214-009-0540-1
  41. B. Delley, J. Chem. Phys., 113, 7756 (2000). https://doi.org/10.1063/1.1316015
  42. B. Delley, Comput. Mater. Sci., 17, 122 (2000). https://doi.org/10.1016/S0927-0256(00)00008-2
  43. J. P. Perdew and Y. Wang, Phys. Rev. B: Condens. Matter., 45, 13244 (1992). https://doi.org/10.1103/PhysRevB.45.13244
  44. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  45. B. Hammer, L. B. Hansen and J. K. Norskov, Phys. Rev. B: Condens. Matter., 59, 7413 (1999). https://doi.org/10.1103/PhysRevB.59.7413
  46. B. Hammer and J. K. Norskov, Adv. Catal., 45, 71 (2000).
  47. B. Delley, Phys. Rev. B: Condens. Matter., 66, 155125 (2002). https://doi.org/10.1103/PhysRevB.66.155125
  48. H. Y. Kim, D. H. Kim, J. H. Ryu and H. M. Lee, J. Phys. Chem. C, 113, 15559 (2009). https://doi.org/10.1021/jp905047h
  49. H. Y. Kim, S. S. Han, J. H. Ryu and H. M. Lee, J. Phys. Chem. C, 114, 3156 (2010). https://doi.org/10.1021/jp9111553
  50. H. Hakkinen and U. Landman, J. Am. Chem. Soc., 123, 9704 (2001). https://doi.org/10.1021/ja0165180
  51. J. Hagen, L. D. Socaciu, M. Elijazyfer, U. Heiz, T. M. Bernhardt and L. Woste, Phys. Chem. Chem. Phys., 4, 1707 (2002). https://doi.org/10.1039/b201236g
  52. J. Oviedo and R. E. Palmer, J. Chem. Phys., 117, 9548 (2002). https://doi.org/10.1063/1.1524154
  53. N. Lopez and J. K. Norskov, J. Am. Chem. Soc., 124, 11262 (2002). https://doi.org/10.1021/ja026998a
  54. W. T. Wallace and R. L. Whetten, J. Am. Chem. Soc., 124, 7499 (2002). https://doi.org/10.1021/ja0175439
  55. S. Chretien and H. Metiu, J. Chem. Phys., 128, 044714 (2008). https://doi.org/10.1063/1.2829405
  56. M. Baron, O. Bondarchuk, D. Stacchiola, S. Shaikhutdinov and H.-J. Freund, J. Phys. Chem. C, 113, 6042 (2009). https://doi.org/10.1021/jp9001753
  57. T. Risse, S. Shaikhutdinov, N. Nilius, M. Sterrer and H.-J. Freund, Acc. Chem. Res., 41, 949 (2008). https://doi.org/10.1021/ar800078m