DOI QR코드

DOI QR Code

Inhibition of Differentiation and Anti-Adipogenetic Effect of the Salvia plebeia R. Br. Ethanol Extract in Murine Adipocytes, 3T3-L1 Cells

배암차즈기 에탄올 추출물의 3T3-L1 지방전구세포 분화 억제 및 지방 축적 저해 효과

  • Kim, Sung-Ok (Department of Food Science & Biotechnology (Nutrition), Kyungsung University) ;
  • Kim, Mi-Ryeo (Department of Herbal Pharmacology, College of Korean Medicine, Daegu Hanny University) ;
  • Hwang, Kyung-A (Department of Agrofood Resources, National Academy of Agricultural Sciences, Rural Development Administration) ;
  • Park, No-Jin (Wild Flower Institute of Gurye-gun Agricultural Center) ;
  • Jeong, Ji-Suk (Wild Flower Institute of Gurye-gun Agricultural Center)
  • 김성옥 (경성대학교 식품응용공학부 식품영양전공) ;
  • 김미려 (대구한의대학교 한의과대학 약리학교실) ;
  • 황경아 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 박노진 (구례군농업기술센터 구례야생화연구소) ;
  • 정지숙 (구례군농업기술센터 구례야생화연구소)
  • Received : 2017.01.11
  • Accepted : 2017.03.30
  • Published : 2017.04.30

Abstract

Salvia plebeia R. Br. (Lamiaceae) has been used in folk medicines in Asian countries, including Korea and China, to treat inflammatory diseases. The focus of our research was on the anti-adipogenic activity of ethanol extract from Salvia plebeia R. Br. (SPE) in 3T3-L1 adipocytes. This study investigated inhibition of differentiation and lipogenesis upon SPE treatment in 3T3-L1 cells. The results reveal that SPE at non-cytotoxic concentration significantly suppressed triglyceride accumulation and reduced expression of peroxisome proliferator-activated receptor gamma, CCAAT/enhancer-binding protein-alpha, and sterol regulatory element-binding protein as adipogenic transcription factors in 3T3-L1 adipocytes compared to non-treated control cells. Inducible phosphorylation of AMP-activated protein kinase, acetyl CoA carboxylase, and hormone-sensitive lipase as well as carnitine palmitoyltransferase-1 mRNA expression increased upon SPE treatment, which suppressed expression of fatty acid synthase. In conclusion, these results demonstrate that SPE can inhibit expression of adipogenic genes in 3T3-L1 adipocytes. Our study suggests that SPE has potential anti-obesity effects and is a novel therapeutic functional agent with anti-adipogenic activity via reduction of lipogenesis.

본 연구는 배암차즈기 에탄올 추출물(SPE)을 유효성분으로 함유하는 지방 생성 및 축적 저해 효능을 조사하였다. 배암 차즈기 에탄올 추출물은 마우스 배아 섬유아세포(mouse embryo fibroblast) 유래 지방세포인 3T3-L1에서 지방세포 분화를 억제하는 효능을 보유하고 있었으며, 지방세포 내 중성지방의 농도를 감소시키는 효능을 보유하고 있었다. 또한, $PPAR{\gamma}$, $C/EBP{\alpha}$, SREBP-1c, pACC, pAMPK, CPT-1, 지방산 합성효소(FAS, fatty acid synthase) 발현 억제, 호르몬자극지방분해효소(HSL, hormone sensitivity lipase) 활성화 등 지방합성 관련인자들의 발현을 조절하는 효능을 보유하고 있는 것으로 확인되었다. 이상의 결과로 SPE가 지방세포 분화 및 지방대사에 관련된 인자들의 발현을 조절함으로써 지방 생성 및 지방 축적을 저해하는 효능을 보유하기 때문에 배암차즈기를 활용한 비만 개선을 위한 소재로서의 활용이 가능할 것으로 보인다.

Keywords

References

  1. Sim MO, Lee HI, Ham JR, Seo KI, Lee MK. 2015. Longterm supplementation of esculetin ameliorates hepatosteatosis and insulin resistance partly by activating AdipoR2-AMPK pathway in diet-induced obese mice. J Funct Foods 15: 160-171. https://doi.org/10.1016/j.jff.2015.03.014
  2. WHO/Europe approaches to obesity. http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity/obesity (accessed Jan 2017).
  3. Noh SK. 2002. Functional action of flavonoids for treatment of obesity. Food Industry and Nutrition 7(2): 27-29.
  4. Salvia plebeia R. Br.. http://www.nature.go.kr/kbi/plant/pilbk/selectPlantPilbkDtl.do?plantPilbkNo=33589 (accessed Jan 2017).
  5. Jo SY, Lee U, Kim EY, Lee SJ, Her JW, Yoon TJ. 2010. A study on the anti-inflammatory and anti-allergic effect of Salvia plebeia R. extracts. Korean J Pharmacogn 41: 31-37.
  6. Cho KJ, Bae SC, Kim JB, Kim SS, Kang SA, Kim MB. 2007. Development of functional medicinal food materials and separation of physiological active substances from native plants. Ministry of Agriculture, Food and Rural Affairs (GOVP1200723280), Sejong, Korea. p 3-146.
  7. Jin XF, Lu YH, Wei DZ, Wang ZT. 2008. Chemical fingerprint and quantitative analysis of Salvia plebeia R.Br. by high-performance liquid chromatography. J Pharm Biomed Anal 48: 100-104. https://doi.org/10.1016/j.jpba.2008.05.027
  8. Choi JK, Oh HM, Lee S, Kwon TK, Shin TY, Rho MC, Kim SH. 2014. Salvia plebeia suppresses atopic dermatitislike skin lesions. Am J Chin Med 42: 967-985. https://doi.org/10.1142/S0192415X1450061X
  9. Wu F, Wang H, Li J, Liang J, Ma S. 2012. Homoplantaginin modulates insulin sensitivity in endothelial cells by inhibiting inflammation. Biol Pharm Bull 35: 1171-1177. https://doi.org/10.1248/bpb.b110586
  10. Choi JK, Oh HM, Park JH, Choi JH, Sa KH, Kang YM, Park PH, Shin TY, Rho MC, Kim SH. 2015. Salvia plebeia extract inhibits the inflammatory response in human rheumatoid synovial fibroblasts and a murine model of arthritis. Phytomedicine 22: 415-422. https://doi.org/10.1016/j.phymed.2015.01.007
  11. Gao H, Liu Y, Li K, Wu T, Peng J, Jing F. 2016. Hispidulin induces mitochondrial apoptosis in acute myeloid leukemia cells by targeting extracellular matrix metalloproteinase inducer. Am J Transl Res 8: 1115-1132.
  12. Choi SI, Kwak H, Kim JY, Choi JG, Lee JH. 2015. Antiadipogenic effects of Salvia plebeia R. Br. extracts by extraction conditions in 3T3-L1 preadipocytes. Korean J Med Crop Sci 23: 245-252. https://doi.org/10.7783/KJMCS.2015.23.3.245
  13. Won HR. 2016. Effect of Salvia plebeia water extract on antioxidant activity and lipid composition of rats fed a high fat-high cholesterol diet. Korean J Community Living Sci 27: 233-243. https://doi.org/10.7856/kjcls.2016.27.2.233
  14. Jeong JS, Kim YJ, Choi BR, Go GB, Son BG, Gang SW, Moon SM. 2014. Antioxidant and physicochemical changes in Salvia plebeia R. Br. after hot-air drying and blanching. J Korean Soc Food Sci Nutr 43: 893-900. https://doi.org/10.3746/jkfn.2014.43.6.893
  15. Park SI, Kim TS, Park CG, Kang MH. 2012. Nutritional and sensory of green leafy vegetables cultivated from medicinal plant seed. J East Asian Soc Diet Life 22: 271-277.
  16. Jeong JS, Kim YJ, Ahn EK, Shin JY, Go GB, Son BG. 2015. Antioxidative activities and qualitative characteristics of substitute tea using Salvia plebeia R. Br.. Korean J Food Cook Sci 31: 41-52. https://doi.org/10.9724/kfcs.2015.31.1.041
  17. Jeong H, Sung M, Kim Y, Ham H, Choi Y, Lee J. 2012. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW264.7 macrophages. J Korean Soc Food Sci Nutr 41: 888-894. https://doi.org/10.3746/jkfn.2012.41.7.888
  18. Park JA, Jin KS, Kwon HJ, Kim BW. 2015. Antiobesity activity of Chrysanthemum zawadskii methanol extract. J Life Sci 25: 299-306. https://doi.org/10.5352/JLS.2015.25.3.299
  19. Jeong HJ, Park JH, Kim MJ. 2015. Ethanol extract of Hippophae Rhamnoides L. leaves inhibits adipogenesis through AMP-activated protein kinase (AMPK) activation in 3T3-L1 preadipocytes. Korean J Plant Res 28: 582-590. https://doi.org/10.7732/kjpr.2015.28.5.582
  20. de Ferranti S, Mozaffarian D. 2008. The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. Clin Chem 54: 945-955. https://doi.org/10.1373/clinchem.2007.100156
  21. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Hartzell DL, Park JH, Baile CA. 2008. Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82: 1032-1039. https://doi.org/10.1016/j.lfs.2008.03.003
  22. Morrison RF, Farmer SR. 2000. Hormonal signaling and transcriptional control of adipocyte differentiation. J Nutr 130: 3116S-3121S. https://doi.org/10.1093/jn/130.12.3116S
  23. Ntambi JM, Kim YC. 2000. Adipocyte differentiation and gene expression. J Nutr 130: 3122S-3126S. https://doi.org/10.1093/jn/130.12.3122S
  24. Rangwala SM, Lazar MA. 2004. Peroxisome proliferator-activated receptor ${\gamma}$ in diabetes and metabolism. Trends Pharmacol Sci 25: 331-336. https://doi.org/10.1016/j.tips.2004.03.012
  25. Ambati S, Yang JY, Rayalam S, Park HJ, Della-Fera MA, Baile CA. 2009. Ajoene exerts potent effects in 3T3-L1 adipocytes by inhibiting adipogenesis and inducing apoptosis. Phytother Res 23: 513-518. https://doi.org/10.1002/ptr.2663
  26. Hardie DG. 2004. The AMP-activated protein kinase pathway-new players upstream and downstream. J Cell Sci 117: 5479-5487. https://doi.org/10.1242/jcs.01540
  27. Kahn BB, Alquier T, Carling D, Hardie DG. 2005. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1: 15-25. https://doi.org/10.1016/j.cmet.2004.12.003
  28. Zhang BB, Zhou G, Li C. 2009. AMPK: An emerging drug target for diabetes and the metabolic syndrome. Cell Metab 9: 407-416. https://doi.org/10.1016/j.cmet.2009.03.012
  29. Gonzalez-Barroso MM, Anedda A, Gallardo-Vara E, Redondo-Horcajo M, Rodriguez-Sanchez L, Rial E. 2012. Fatty acids revert the inhibition of respiration caused by the antidiabetic drug metformin to facilitate their mitochondrial ${\beta}$-oxidation. Biochim Biophys Acta 1817: 1768-1775. https://doi.org/10.1016/j.bbabio.2012.02.019
  30. Jung HK, Sim MO, Jang JH, Kim TM, An BK, Kim MS, Jung WS. 2016. Anti-obesity effects of Peucedanum japonicum Thunberg L. on 3T3-L1 cells and high-fat diet-induced obese mice. Korean J Plant Res 29: 1-10. https://doi.org/10.7732/kjpr.2016.29.1.001

Cited by

  1. 홍맥 추출물의 3T3-L1세포에 대한 지방 축적 저해 활성평가 vol.31, pp.2, 2017, https://doi.org/10.5352/jls.2021.31.2.192