DOI QR코드

DOI QR Code

LPS로 자극한 대식세포에서 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose의 염증 억제 효과

Anti-Inflammatory Effects of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in LPS-Stimulated Macrophages

  • 이희원 (대구대학교 식품영양학과) ;
  • 강예림 (대구대학교 식품영양학과) ;
  • 배민서 (대구대학교 식품영양학과) ;
  • 김윤희 (대구대학교 식품영양학과)
  • Lee, Hee Won (Department of Food and Nutrition, College of Engineering, Daegu University) ;
  • Kang, Ye Rim (Department of Food and Nutrition, College of Engineering, Daegu University) ;
  • Bae, Min Seo (Department of Food and Nutrition, College of Engineering, Daegu University) ;
  • Kim, Yoon Hee (Department of Food and Nutrition, College of Engineering, Daegu University)
  • 투고 : 2017.01.18
  • 심사 : 2017.02.23
  • 발행 : 2017.04.30

초록

천연물 유래 물질의 항염증 활성에 대한 잠재성을 평가하기 위한 일환으로 오배자에서 분리한 PGG가 LPS로 자극한 마우스 대식세포인 RAW264.7 세포에서 염증반응에 미치는 영향에 대해 평가하고 관련 메커니즘에 대해 검토하였다. PGG는 LPS 자극에 의해 유도된 iNOS 및 COX-2 단백질 발현량을 감소함으로써 NO와 $PGE_2$ 생성을 억제할 뿐만 아니라 IL-6, TNF-${\alpha}$와 같은 pro-inflammatory cytokine의 분비를 억제하였다. 이러한 효과는 전사인자인 NF-${\kappa}B$의 세포질에서 핵으로의 이동을 억제함으로써 나타나는 것으로 판단된다. 이러한 결과로부터 PGG가 염증 반응을 저해하는 효과가 있는 것으로 나타나 향후 염증성 질환을 예방, 개선 및 치료하는 데 유용한 물질로 사용될 가능성이 있을 것으로 생각된다.

1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose (PGG) is a gallotannin isolated from Galla Rhois. In a previous study, PGG was shown to suppress the allergic response by attenuating immunoglobulin E production both in vitro and in vivo. However, the effect of PGG on bacteria-induced inflammation at physiological concentration remains unclear. Therefore, the aim of this study was to investigate the effect of PGG on lipopolysaccharide (LPS)-stimulated macrophages. PGG inhibited release of nitric oxide (NO) and prostaglandin $E_2$ by alleviating protein expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Furthermore, PGG suppressed the release of interleukin-6 and tumor necrosis factor-${\alpha}$ induced by LPS. Further study indicated that PGG blocked translocation of the p65 subunit of nuclear factor-${\kappa}B$ from the cytosol into the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of PGG. Collectively, these data suggest that PGG might be useful for the treatment of inflammatory disease.

키워드

참고문헌

  1. Dunster JL. 2016. The macrophage and its role in inflammation and tissue repair: mathematical and systems biology approaches. Wiley Interdiscip Rev Syst Biol Med 8: 87-99. https://doi.org/10.1002/wsbm.1320
  2. Butterfield TA, Best TM, Merrick MA. 2006. The dual roles of neutrophils and macrophages in inflammation: a critical balance between tissue damage and repair. J Athl Train 41: 457-465.
  3. Pal S, Bhattacharjee A, Ali A, Mandal NC, Mandal SC, Pal M. 2014. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism. J Inflamm 11: 23. https://doi.org/10.1186/1476-9255-11-23
  4. Verstrepen L, Beyaert R. 2014. Receptor proximal kinases in NF-${\kappa}B$ signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol 92: 519-529. https://doi.org/10.1016/j.bcp.2014.10.017
  5. Smale ST. 2010. Selective transcription in response to an inflammatory stimulus. Cell 140: 833-844. https://doi.org/10.1016/j.cell.2010.01.037
  6. Mahdavian Delavary B, van der Veer WM, van Egmond M, Niessen FB, Beelen RHJ. 2011. Macrophages in skin injury and repair. Immunobiology 216: 753-762. https://doi.org/10.1016/j.imbio.2011.01.001
  7. Liu J, Tang J, Zuo Y, Yu Y, Luo P, Yao X, Dong Y, Wang P, Liu L, Zhou H. 2016. Stauntoside B inhibits macrophage activation by inhibiting NF-${\kappa}B$ and ERK MAPK signalling. Pharmacol Res 111: 303-315. https://doi.org/10.1016/j.phrs.2016.06.022
  8. Wu S, Ma C, Gao X, Zhang L, Miao Q, Li M, Li W, Song X, Wang X, Liu J, Wei L. 2016. Group A Streptococcus induces less p65 nuclear translocation and non-classical nuclear factor kappa B activation in macrophages, which possibly leads to a weaker inflammatory response. Int J Infect Dis 44: 50-60. https://doi.org/10.1016/j.ijid.2016.01.018
  9. Laskin DL, Sunil VR, Gardner CR, Laskin JD. 2011. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 51: 267-288. https://doi.org/10.1146/annurev.pharmtox.010909.105812
  10. Giuliani C, Napolitano G, Bucci I, Montani V, Monaco F. 2001. NF-${\kappa}B$ transcription factor: Role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications. Clin Ter 152: 249-253.
  11. Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ. 2007. Ribosomal protein S3: a KH domain subunit in NF-${\kappa}B$ complexes that mediates selective gene regulation. Cell 131: 927-939. https://doi.org/10.1016/j.cell.2007.10.009
  12. Feldmann M, Gasparini C. 2012. NF-${\kappa}B$ as a target for modulating inflammatory responses. Curr Pharm Des 18: 5735-5745. https://doi.org/10.2174/138161212803530763
  13. Kwon OJ, Bae JS, Lee HY, Hwang JY, Lee EW, Ito H, Kim TH. 2013. Pancreatic lipase inhibitory gallotannins from Galla Rhois with inhibitory effects on adipocyte differentiation in 3T3-L1 cells. Molecules 18: 10629-10638. https://doi.org/10.3390/molecules180910629
  14. Deiab S, Mazzio E, Eyunni S, McTier O, Mateeva N, Elshami F, Soliman KFA. 2015. 1,2,3,4,6-Penta-O-galloylglucose within Galla Chinensis inhibits human LDH-A and attenuates cell proliferation in MDA-MB-231 breast cancer cells. Evid Based Complement Alternat Med 2015: 276946.
  15. Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H. 2009. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucopyranose have potent anti-aggregation effects on Alzheimer's amyloid ${\beta}$ proteins in vitro and in vivo. J Neurochem 109: 1648-1657. https://doi.org/10.1111/j.1471-4159.2009.06069.x
  16. Zhang J, Li L, Kim SH, Hagerman AE, Lu J. 2009. Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose. Pharm Res 26: 2066-2080. https://doi.org/10.1007/s11095-009-9932-0
  17. Kim YH, Yang X, Yamashita S, Kumazoe M, Huang Y, Nakahara K, Won YS, Murata M, Lin IC, Tachibana H. 2015. 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucopyranose increases a population of T regulatory cells and inhibits IgE production in ovalbumin-sensitized mice. Int Immunopharmacol 26: 30-36. https://doi.org/10.1016/j.intimp.2015.02.025
  18. Lin MH, Chang FR, Hua MY, Wu YC, Liu ST. 2011. Inhibitory effects of 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucopyranose on biofilm formation by Staphylococcus aureus. Antimicrob Agents Chemother 55: 1021-1027. https://doi.org/10.1128/AAC.00843-10
  19. Jang SE, Hyam SR, Jeong JJ, Han MJ, Kim DH. 2013. Penta-O-galloyl-${\beta}$-D-glucose ameliorates inflammation by inhibiting MyD88/NF-${\kappa}B$ and MyD88/MAPK signalling pathways. Br J Pharmacol 170: 1078-1091. https://doi.org/10.1111/bph.12333
  20. Pan MH, Lin-Shiau SY, Ho CT, Lin JH, Lin JK. 2000. Suppression of lipopolysaccharide-induced nuclear factor-${\kappa}B$ activity by theaflavin-3,3'-digallate from black tea and other polyphenols through down-regulation of I${\kappa}B$ kinase activity in macrophages. Biochem Pharmacol 59: 357-367. https://doi.org/10.1016/S0006-2952(99)00335-4
  21. Lee SJ, Lee IS, Mar W. 2003. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta-O-galloyl-${\beta}$-D-glucose in murine macrophage cells. Arch Pharmacol Res 26: 832-839. https://doi.org/10.1007/BF02980029
  22. Genfa L, Jiang Z, Hong Z, Yimin Z, Liangxi W, Guo W, Ming H, Donglen J, Lizhao W. 2005. The screening and isolation of an effective anti-endotoxin monomer from Radix Paeoniae Rubra using affinity biosensor technology. Int Immunopharmacol 5: 1007-1017. https://doi.org/10.1016/j.intimp.2005.01.013
  23. Li L, Shaik AA, Zhang J, Nhkata K, Wang L, Zhang Y, Xing C, Kim SH, Lu J. 2011. Preparation of penta-O-galloyl-${\beta}$-D-glucose from tannic acid and plasma pharmacokinetic analyses by liquid-liquid extraction and reverse-phage HPLC. J Pharm Biomed Anal 54: 545-550. https://doi.org/10.1016/j.jpba.2010.09.028
  24. Dupont LL, Glynos C, Bracke KR, Brouckaert P, Brusselle GG. 2014. Role of nitric oxide-soluble guanylyl cyclase pathway in obstructive airway diseases. Pulm Pharmacol Ther 29: 1-6. https://doi.org/10.1016/j.pupt.2014.07.004
  25. Wennmalm A, Benthin G, Edlund A, Kieler-Jensen N, Lundin S, Petersson AS, Waagstein F. 1994. Nitric oxide synthesis and metabolism in man. Ann N Y Acad Sci 714: 158-164. https://doi.org/10.1111/j.1749-6632.1994.tb12040.x
  26. Ulmann L, Hirbec H, Rassendren F. 2010. P2X4 receptors mediate PG$E_2$ release by tissue-resident macrophages and initiate inflammatory pain. EMBO J 29: 2290-2300. https://doi.org/10.1038/emboj.2010.126
  27. Redington AE, Meng QH, Springall DR, Evans TJ, Creminon C, Maclouf J, Holgate ST, Howarth PH, Polak JM. 2001. Increased expression of inducible nitric oxide synthase and cyclo-oxygenase-2 in the airway epithelium of asthmatic subjects and regulation by corticosteroid treatment. Thorax 56: 351-357. https://doi.org/10.1136/thorax.56.5.351
  28. Vahora H, Khan MA, Alalami U, Hussain A. 2016. The potential role of nitric oxide in halting cancer progression through chemoprevention. J Cancer Prev 21: 1-12. https://doi.org/10.15430/JCP.2016.21.1.1
  29. Iwakiri Y. 2015. Nitric oxide in liver fibrosis: The role of inducible nitric oxide synthase. Clin Mol Hepatol 21: 319-325. https://doi.org/10.3350/cmh.2015.21.4.319
  30. Koeberle A, Werz O. 2015. Perspective of microsomal prostaglandin $E_2$ synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol 98: 1-15. https://doi.org/10.1016/j.bcp.2015.06.022
  31. Hayashi S, Sumi Y, Ueno N, Murase A, Takada J. 2011. Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and anti-inflammatory drug: Design, synthesis, and structure-activity relationship. Biochem Pharmacol 82: 755-768. https://doi.org/10.1016/j.bcp.2011.06.036
  32. Ho LJ, Luo SF, Lai JH. 2015. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem Pharmacol 97: 16-26. https://doi.org/10.1016/j.bcp.2015.06.009
  33. Sethi G, Sung B, Aggarwal BB. 2008. TNF: a master switch for inflammation to cancer. Front Biosci 13: 5094-5107.
  34. Morgan MJ, Liu ZG. 2011. Crosstalk of reactive oxygen species and NF-${\kappa}B$ signaling. Cell Res 21: 103-115. https://doi.org/10.1038/cr.2010.178