DOI QR코드

DOI QR Code

Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound

  • 투고 : 2016.06.09
  • 심사 : 2017.02.08
  • 발행 : 2017.04.30

초록

Carboxylated multi-wall carbon nanotubes (MWCNTs-COOH) have been used as efficient adsorbents for the removal of picric acid from aqueous solutions under stirring and ultrasound conditions. Batch experiments were conducted to study the influence of the different parameters such as pH, amount of adsorbents, contact time and concentration of picric acid on the adsorption process. The kinetic data were fitted with pseudo-first order, pseudo-second-order, Elovich and intra-particle diffusion models. The kinetic studies were well described by the pseudo-second-order kinetic model for both methods. In addition, the adsorption isotherms of picric acid from aqueous solutions on the MWCNTs were investigated using six two-parameter models (Langmuir, Freundlich, Tempkin, Halsey, Harkins-Jura, Fowler-Guggenheim), four three-parameter models (Redlich-Peterson, Khan, Radke-Prausnitz, and Toth), two four-parameter equations (Fritz-Schlunder and Baudu) and one five-parameter equation (Fritz-Schlunder). Three error analysis methods, correlation coefficient, chi-square test and average relative errors, were applied to determine the best fit isotherm. The error analysis showed that the models with more than two parameters better described the picric acid sorption data compared to the two-parameter models. In particular, the Baudu equation provided the best model for the picric acid sorption data for both methods.

키워드

참고문헌

  1. Rappoport Z. The Chemistry of Phenols, John Wiley & Sons, Chichester (2003).
  2. Aggarwal P, Misra K, Kapoor SK, Bhalla AK, Bansal RC. Effect of surface oxygen complexes of activated carbon on the adsorption of 2,4,6-trinitrophenol. Def Sci J, 48, 219 (1998). https://doi.org/10.14429/dsj.48.3902.
  3. Boileau J, Fauquigonon C, Napoly C. Explosives. In: Gerharts W, Tamamoto YS, Kaudy L, Rounsaviille JF, Schulz G, eds. Ullmann's Encyclopedia of Industrial Chemistry, VCH, Weinheim, 145 (1987).
  4. Roth J. Picric Acid. In: Kaye SM, Herman HL, eds. Encyclopedia of Explosives and Related Items, US Army Armament Research and Development Command, Dover, 285 (1980).
  5. US Environmental Protection Agency, Ambient Water Quality Criteria for Nitrophenol, USEPA, Washington DC, (1980).
  6. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K. Fate and effects of picric acid and 2,6-DNT in marine environments: toxicity of degradation products. Mar Pollut Bull, 50, 1205 (2005). https://doi.org/10.1016/j.marpolbul.2005.04.019.
  7. Kavlock RJ, Oglesby LA, Hall LL, Fisher HL, Copeland F, Logsdon T, Ebron-McCoy M. In vivo and in vitro structure-dosimetry-activity relationships of substituted phenols in developmental toxicity assays. Reprod Toxicol, 5, 255 (1991). https://doi.org/10.1016/0890-6238(91)90059-o.
  8. World Health Organization, Guidelines for Drinking Water Quality. Vol. II: Health Criteria and Supporting Information, WHO, Geneva, (1984).
  9. US Environmental Protection Agency, Technical Support Document for Water Quality Based Toxics Control, EPA/440/485032, USEPA, Washington, DC (1985).
  10. Shen XE, Shan XQ, Dong DM, Hua XY, Owens G. Kinetics and thermodynamics of sorption of nitroaromatic compounds to asgrown and oxidized multiwalled carbon nanotubes. J Colloid Interface Sci, 330, 1 (2009). https://doi.org/10.1016/j.jcis.2008.10.023.
  11. Galan J, Rodriguez A, Gomez JM, Allen SJ, Walker GM. Reactive dye adsorption onto a novel mesoporous carbon. Chem Eng J, 219, 62 (2013). https://doi.org/10.1016/j.cej.2012.12.073.
  12. Goscianska J, Marciniak M, Pietrzak R. Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption. Chem Eng J, 247, 258 (2014). https://doi.org/10.1016/j.cej.2014.03.012.
  13. Goscianska J, Pietrzak R. Removal of tartrazine from aqueous solution by carbon nanotubes decorated with silver nanoparticles. Catal Today, 249, 259 (2015). https://doi.org/10.1016/j.cattod.2014.11.017.
  14. Akbarzadeh H, Abbaspour M, Salemi S. Carbon monoxide adsorption on the single-walled carbon nanotube supported gold-silver nanoalloys. New J Chem, 40, 310 (2016). https://doi.org/10.1039/C5NJ01382H.
  15. Jahangiri M, Kiani F, Tahermansouri H, Rajabalinezhad A. The removal of lead ions from aqueous solutions by modified multiwalled carbon nanotubes with 1-isatin-3-thiosemicarbazone. J Mol Liq, 212, 219 (2015). https://doi.org/10.1016/j.molliq.2015.09.010.
  16. Tahermansouri H, Ahi RM, Kiani F. Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations: a comparison. J Chin Chem Soc, 61, 1188 (2014). https://doi.org/10.1002/jccs.201400197.
  17. Wang Y, Gu Z, Yang J, Liao J, Yang Y, Liu N, Tang J. Amidoximegrafted multiwalled carbon nanotubes by plasma techniques for efficient removal of uranium(VI). Appl Surf Sci, 320, 10 (2014). https://doi.org/10.1016/j.apsusc.2014.08.182.
  18. Tahermansouri H, Dehghan Z, Kiani F. Phenol adsorption from aqueous solutions by functionalized multiwalled carbon nanotubes with a pyrazoline derivative in the presence of ultrasound. RSC Adv, 5, 44263 (2015). https://doi.org/10.1039/c5ra02800k.
  19. Strachowski P, Bystrzejewski M. Comparative studies of sorption of phenolic compounds onto carbon-encapsulated iron nanoparticles, carbon nanotubes and activated carbon. Colloids Surf A Physicochem Eng Asp, 467, 113 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.044.
  20. Ihsanullah I, Asmaly HA, Saleh TA, Laoui T, Gupta VK, Atieh MA. Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J Mol Liq, 206, 176 (2015). https://doi.org/10.1016/j.molliq.2015.02.028.
  21. Atieh MA. Removal of phenol from water different types of carbon: a comparative analysis. APCBEE Procedia, 10, 136 (2014). https://doi.org/10.1016/j.apcbee.2014.10.031.
  22. Hüffer T, Schroth S, Schmidt TC. Influence of humic acids on sorption of alkanes by carbon nanotubes: implications for the dominant sorption mode. Chemosphere, 119, 1169 (2015). https://doi.org/10.1016/j.chemosphere.2014.09.097.
  23. Yu F, Sun S, Han S, Zheng J, Ma J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem Eng J, 285, 588 (2016). https://doi.org/10.1016/j.cej.2015.10.039.
  24. Ncibi MC, Sillanpaa M. Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. J Hazard Mater, 298, 102 (2015). https://doi.org/10.1016/j.jhazmat.2015.05.025.
  25. Wu W, Yang K, Chen W, Wang W, Zhang J, Lin D, Xing B. Correlation and prediction of adsorption capacity and affinity of aromatic compounds on carbon nanotubes. Water Res, 88, 492 (2016). https://doi.org/10.1016/j.watres.2015.10.037.
  26. Kim DW, Kim YD, Choi KH, Lim DC, Lee KH. Comparison of the toluene adsorption capacities of various carbon nanostructures. Carbon Lett, 12, 81 (2011). https://doi.org/10.5714/CL.2011.12.2.081.
  27. Asfaram A, Ghaedi M, Goudarzi A, Rajabi M. Response surface methodology approach for optimization of simultaneous dye and metal ion ultrasound-assisted adsorption onto Mn doped $Fe_3O_4$- NPs loaded on AC: kinetic and isothermal studies. Dalton Trans, 44, 14707 (2015). https://doi.org/10.1039/C5DT01504A.
  28. Saghanejhad Tehrani M, Zare-Dorabei R. Highly efficient simultaneous ultrasonic-assisted adsorption of methylene blue and rhodamine B onto metal organic framework MIL-68(Al): central composite design optimization. RSC Adv, 6, 27416 (2016). https://doi.org/10.1039/C5RA28052D.
  29. Dashamiri S, Ghaedi M, Dashtian K, Rahimi MR, Goudarzi A, Jannesar R. Ultrasonic enhancement of the simultaneous removal of quaternary toxic organic dyes by CuO nanoparticles loaded on activated carbon: central composite design, kinetic and isotherm study. Ultrason Sonochem, 31, 546 (2016). https://doi.org/10.1016/j.ultsonch.2016.02.008.
  30. Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J, 156, 2 (2010). https://doi.org/10.1016/j.cej.2009.09.013.
  31. Daifullah AAM, Girgis BS. Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Res, 32, 1169 (1998). https://doi.org/10.1016/S0043-1354(97)00310-2.
  32. Terzyk AP. Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J Colloid Interface Sci, 268, 301 (2003). https://doi.org/10.1016/S0021-9797(03)00690-8.
  33. Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24, 1 (1898).
  34. Chien SH, Clayton WR. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Soc Am J, 44, 265 (1980). https://doi.org/10.2136/sssaj1980.03615995004400020013x.
  35. Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng, 89, 31 (1963).
  36. Langmuir I. The constitution and fundamental properties of solids and liquids: part I. solids. J Am Chem Soc, 38, 2221 (1916). https://doi.org/10.1021/ja02268a002.
  37. Freundlich HMF. Over the adsorption in solution. J Phys Chem, 57, 385 (1906).
  38. Halsey GD. The role of surface heterogeneity. Adv Catal, 4, 259 (1952). https://doi.org/10.1016/S0360-0564(08)60616-1.
  39. Tempkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysis. Acta Physicochimica URSS, 12, 327 (1940).
  40. Kausar A, Bhatti HN, MacKinnon G. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste. Colloids Surf B Biointerfaces, 111, 124 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.028.
  41. Fowler RH, Guggenheim EA. Statistical Thermodynamics, Cambridge University Press, London, 431 (1939).
  42. Redlich O, Peterson DL. A useful adsorption isotherm. J Phys Chem, 63, 1024 (1959). https://doi.org/10.1021/j150576a611.
  43. Khan AR, Ataullah R, Al-Haddad A. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures. J Colloid Interface Sci, 194, 154 (1997). https://doi.org/10.1006/jcis.1997.5041.
  44. Vijayaraghavan K, Padmesh TVN, Palanivelu K, Velan M. Biosorption of nickel(II) ions onto Sargassum wightii: application of twoparameter and three-parameter isotherm models. J Hazard Mater, 133, 304 (2006). https://doi.org/10.1016/j.jhazmat.2005.10.016.
  45. Zhang L, Zeng Y, Cheng Z. Removal of heavy metal ions using chitosan and modified chitosan: a review. J Mol Liq, 214, 175 (2016). https://doi.org/10.1016/j.molliq.2015.12.013.
  46. Fritz W, Schlunder EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solution on activated carbon. Chem Eng Sci, 29, 1279 (1974). https://doi.org/10.1016/0009-2509(74)80128-4.
  47. Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: part II. models with more than two parameters J Hazard Mater, 147, 401 (2007). https://doi.org/10.1016/j.jhazmat.2007.01.023.