DOI QR코드

DOI QR Code

Implementation of High-Speed Fresnelet Transform using Daubechies's Filter

드뷔시 필터를 이용한 고속 프레넬릿 변환의 구현

  • Seo, Young-Ho (Ingenium College of Liberal Arts, Kwangwoon University) ;
  • Lee, Yoon-Hyuk (Department of Electronic Materials Engineering, Kwangwoon University) ;
  • Kim, Dong-Wook (Department of Electronic Materials Engineering, Kwangwoon University)
  • Received : 2016.11.09
  • Accepted : 2016.12.20
  • Published : 2017.04.30

Abstract

Service of digital hologram that has been recognized as a visual system for next generation requires various signal processing technologies. A transform is the most frequently used tool among signal processing techniques for 2-dimensional(D) and 3-D natural picture. A digital hologram has totally different property with a natural picture, so it is rarely efficient to apply transform tools used in 2-D image processing to a digital hologram. To overcome this a Fresnelet transform for a digital hologram has been proposed. We derive a Fresnelet transform by using the Daubechie's filter after applying an unitary Fresnel transform to a wavelet basis function. We also implement the transform as types of device and kernel code to improve operational performance. In consideration of the average time that is required for a pixel we can have observed the performance is improved up to 242 and 30 times for using the (9,7) and (5,3) filters in case of using device code.

차세대 영상 시스템인 디지털 홀로그램을 서비스하기 위해서는 다양한 측면에서 신호처리 기술이 필요하다. 우리가 주로 사용하는 2차원 및 3차원 자연 영상을 처리하는데 있어서 가장 많이 사용되는 영상처리 도구는 변환이다. 디지털 홀로그램의 특성은 자연 영상과 매우 다른 특성을 갖기 때문에 2차원 영상에서 사용되던 변환 도구들을 디지털 홀로그램에 적용하는 것은 효율성이 매우 낮다. 이를 극복하기 위해 프레넬릿 변환이 제안되었는데 본 논문에서는 웨이블릿 기저함수에 유니터리 프레넬 변환을 적용하고 드뷔시 필터를 이용하여 프레넬릿 변환을 유도하였다. 또한 프레넬릿 변환을 디바이스 및 커널 코드를 이용하여 구현하여 동작 성능을 향상시키도록 하였다. 모든 해상도에 대해 한 화소당 소요되는 평균 시간을 기준으로 살펴보았을 때 디바이스 코드를 이용하여 병렬화 연산을 수행하면 (9,7)필터의 경우에는 평균 242배, (5,3)필터의 경우에는 평균 30배의 성능향상을 가져온다는 것을 확인하였다.

Keywords

References

  1. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Applied Physics Letters, vol. 11, no. 3, pp. 77-79, Sept. 1967. https://doi.org/10.1063/1.1755043
  2. D. Gabor, "A new microscopic principle," Nature, vol. 161, no. 4098, pp. 777-778, May 1948. https://doi.org/10.1038/161777a0
  3. J. W. Goodman, Introduction to Fourier Optics, McGraw- Hill, 3rd ed. pp. 377-393, New York, 2005.
  4. Y. H. Seo, Y. H. Lee, J. M. Koo, W. Y. Kim, J. S. Yoo, and D. W. Kim, "Digital holographic video service system for natural color scene," Optical Engineering, vol. 52 no. 11, pp. 1-8, Nov. 2013.
  5. Y. H. Seo, H. J. Choi and D. W. Kim, "Digital hologram encryption using discrete wavelet packet transform," Optics Communications, vol. 282, no. 3, pp. 367-377, Jan. 2009. https://doi.org/10.1016/j.optcom.2008.10.028
  6. H. J. Choi, Y. H. Seo, J. S. Yoo, and D. W. Kim, "Digital watermarking technique for holography interference patterns in a transform domain," Optics and Lasers in Engineering, vol. 46, no. 4, pp. 343-348, Apr. 2008. https://doi.org/10.1016/j.optlaseng.2007.11.005
  7. K. Ramamohan Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press, 1st ed. Massachusetts, Jun. 2014.
  8. R. M. Rao and A. S. Bopardikar, Wavelet Transforms, Introduction to Theory and Application, Prentice Hall, Har/Dskt ed. New Jersey, Aug. 1998.
  9. M. Liebling, T. Blu and M. Unser, "Fresnelets: new multiresolution wavelet bases for digital holography," IEEE Transaction Image Process, vol. 12, no. 1, pp. 29-43, Jun. 2003. https://doi.org/10.1109/TIP.2002.806243
  10. N. Muhammad, N. Bibi, Z. Mahmood and D. G. Kim, "Blind data hiding technique using the Fresnelet transform," SpringerPlus, vol. 4, no.1, pp. 1-15, Dec. 2015. https://doi.org/10.1186/2193-1801-4-1
  11. I. Daubechies, Ten Lectures on Wavelets, SIAM, 1st ed. Philadelphia, Jun. 1992.
  12. J. S. Song, J. S. Park, H. H. Park, and J. I. Park, "Real-time generation of high-definition resolution digital holograms by using multiple graphic processing units," Optical Engineering, vol. 52, no. 1, pp. 015803-015803, Jan. 2013. https://doi.org/10.1117/1.OE.52.1.015803
  13. Y. H. Seo, Y. H. Lee, J. S. Yoo, and D. W. Kim, "Highperformance Computer-generated Hologram by Optimized Implementation of parallel GPGPUs," Journal of the Optical Society of Korea, vol. 18, no. 6, pp. 698-705, Dec. 2014. https://doi.org/10.3807/JOSK.2014.18.6.698
  14. S. Cook, CUDA Programming: A Developer's Guide to Parallel Computing with GPUs (Applications of Gpu Computing), Morgan Kaufmann, 1st ed. Massachusetts, Nov. 2012.