DOI QR코드

DOI QR Code

Evaluation of Antioxidative Activity of Various Levels of Ethanol Extracted Tomato Powder and Application to Pork Patties

  • Kim, Hyeong Sang (Department of Animal Science and Functional Food Research Center, Chonnam National University) ;
  • Chin, Koo Bok (Department of Animal Science and Functional Food Research Center, Chonnam National University)
  • Received : 2017.01.11
  • Accepted : 2017.03.02
  • Published : 2017.04.30

Abstract

This study was performed to evaluate antioxidant activity of tomato powder extracted by various concentrations of ethanol (0, 25, 50, 75, 100%) and to evaluate the physicochemical properties and antioxidant activities of pork patties with ethanol extracted tomato (EET) powder. No differences in the contents of total of individual phenolic compounds including gallic acid and catechin, were observed among the treatments (p>0.05). Among the various concentrations, 50% and 75% EET powder showed the highest free radical scavenging and iron chelating activities (p<0.05). Lipid peroxidation was retarded in linoleic acid emulsion with the addition of 50% and 75% EET powder (0.1%). Based on the model study, five pork patties were actually manufactured; control patty, reference patty with 0.01% of butylated hydroxytoluene, patty with 1% of water extracted tomato (WET), and patties with 0.5 and 1.0% of EET. Addition of 1% WET and EET decreased pH value, and increased redness values of pork patties, as compared to the control (p<0.05). Pork patties with WET (1.0%) and EET (0.5% and 1.0%) had lower 2-thiobarbituric acid reactive substances values compared with control patties after 7 d of storage (p<0.05). Pork patties containing EET powder showed lower total bacterial and Enterobacteriaceae counts than control patties (p<0.05). In conclusion, WET and EET (50%) could be used as a natural antioxidant and antimicrobial agent in meat products.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Andjelkovic, M., Van Camp, J., De Meulenaer, B., Depaemelaere, G., Socaciu, C., Verloo, M., and Verhe, R. (2006) Ironchelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 98, 23-31. https://doi.org/10.1016/j.foodchem.2005.05.044
  2. Beutner, S., Bloedorn, B., Frixel, S., Blanco, I. H., Hoffmann, T., Martin, H., Mayer, B., Noack, P., Ruck, C., Schmidt, M., Schülke, I., Sell, S., Ernst, H., Haremza, S., Seybold, G., Sies, H., Stahl, W., and Walsh, R. (2001) Quantitative assessment of antioxidant properties of natural colorants and phytochemicals: carotenoids, flavonoids, phenols and indigoids. The role of ${\beta}$-carotene in antioxidant functions. J. Sci. Food Agric. 81, 559-568. https://doi.org/10.1002/jsfa.849
  3. Bors, W. and Michel, C. (2002) Chemistry of the antioxidanteffect of polyphenols. Ann. N. Y. Acad. Sci. 957, 57-69. https://doi.org/10.1111/j.1749-6632.2002.tb02905.x
  4. Brown, J. E., Khodr, H., Hider, R. C., and Rice-Evans, C. A. (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem. J. 330, 1173-1178. https://doi.org/10.1042/bj3301173
  5. Calvo, M. M., García, M. L., and Selga, M. D. (2008) Dry fermented sausages enriched with lycopene from tomato peel. Meat Sci. 80, 167-172. https://doi.org/10.1016/j.meatsci.2007.11.016
  6. Candogan, K. (2002) The effect of tomato paste on some quality characteristics of beef patties during refrigerated storage. Eur. Food Res. Technol. 215, 305-309. https://doi.org/10.1007/s00217-002-0567-1
  7. Deda, M. S., Blouka, J. G., and Fista, G. A. (2007) Effect of tomato paste and nitrite level on processing and quality characteristics of frankfurters. Meat Sci. 76, 501-508. https://doi.org/10.1016/j.meatsci.2007.01.004
  8. Dudonne, S., Vitrac, X., Coutiere, P., Woillez, M., and Merillon, J. M. (2009) Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 57, 1768-1774. https://doi.org/10.1021/jf803011r
  9. Duh, P.-D. (1998) Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free-radical and active oxygen. J. Am. Oil Chem. Soc. 75, 455-461. https://doi.org/10.1007/s11746-998-0248-8
  10. Eyiler, E. and Oztan, A. (2010) Production of frankfurters with tomato powder as a natural additive. LWT-Food Sci. Technol. 44, 307-311.
  11. Foley, S., Navaratnam, S., McGarvey, D. J., Land, E. J., Truscott, T. G., and Rice-Evans, C. A. (1999) Singlet oxygen quenching and the redox properties of hydroxycinnamic acids. Free Radical Biol. Med. 26, 1202-1208. https://doi.org/10.1016/S0891-5849(98)00313-X
  12. Gahler, S., Otto, K., and Böhm, B. (2003) Alteration of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem. 51, 7962-7968. https://doi.org/10.1021/jf034743q
  13. Garcia, M. L., Calvo, M. M., and Selgas, M. D. (2009) Beef hamburgers enriched in lycopene using dry tomato peel as an ingredient. Meat Sci. 83, 45-49. https://doi.org/10.1016/j.meatsci.2009.03.009
  14. Giovannucci, E. (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiological literature. J. Nat. Cancer Inst. 91, 317-331. https://doi.org/10.1093/jnci/91.4.317
  15. Gordon, M. H. (1990) The mechanism of the antioxidant action in vitro. In: B. J. F. Hudson (Ed.), Food Antioxidants, Elsevier, London, pp. 1-18.
  16. Heber, D. (2000) Colorful cancer prevention: a-carotene, lycopene and lung cancer. Am. J. Clinic. Nutr. 72, 901-902. https://doi.org/10.1093/ajcn/72.4.901
  17. Huang, S. J., Tsai, S. Y., and Mau, J. L. (2006) Antioxidant properties of methanolic extracts from Agrocybe cylindracea. LWT-Food Sci. Technol. 39, 378-386.
  18. Jayaprakasha, G. K., Singh, R. P., and Sakariah, K. K. (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73, 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3
  19. Kim, H. S. and Chin, K. B. (2016) Evaluation of different drying temperatures on physico-chemical and antioxidant properties of water-soluble tomato powders and on their use in pork patties. J. Sci. Food Agric. 96, 742-750. https://doi.org/10.1002/jsfa.7141
  20. Kim, I. S., Jin, S. K., Nam, S. H., Nam, Y. W., Yang, M. R., Min, H. S., and Kim, D. H. (2008) Effect of hot-air dried tomato powder on the quality properties of pork patties during cold storage. J. Anim. Sci. Technol. 50, 255-264. https://doi.org/10.5187/JAST.2008.50.2.255
  21. Kim, Y. W., Chun, H. J., Kim, I. W., Liu, H. B., and Ahn, W. S. (2013) Antimicrobial and antifungal effects of green tea extracts against microorganisms causing vaginitis. Food Sci. Biotechnol. 22, 713-719. https://doi.org/10.1007/s10068-013-0136-3
  22. Le, K., Chiu, F., and Ng, K. (2007) Identification and quantification of antioxidants in Fructus lycii. Food Chem. 105, 353-363. https://doi.org/10.1016/j.foodchem.2006.11.063
  23. Leonardi, C., Ambrosino, P., Esposito, F., and Fogliano, V. (2000) Antioxidant activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 48, 4723-4727. https://doi.org/10.1021/jf000225t
  24. Lin, J. Y. and Tang, C. Y. (2007) Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 101, 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014
  25. Lin, L. Y., Liu, H. M., Yu, Y. W., Lin, S. D., and Mau, J. L. (2009) Quality and antioxidant property of buckwheat enhanced wheat bread. Food Chem. 112, 987-991. https://doi.org/10.1016/j.foodchem.2008.07.022
  26. Lodovici, M., Guglielmi, F., Casalini, C., Meoni, M., Cheynier, V., and Dolara, P. (2001) Antioxidant and radical scavenging properties in vitro of polyphenolic extracts from red wine. Eur. J. Nutr. 40, 74-77. https://doi.org/10.1007/PL00007386
  27. Moure, A., Cruz, J. M., Franco, D., Domínguez, J. M., Sineiro, J., Domínguez, H., Núñez, M. J., and Parajó, J. C. (2001) Natural antioxidants from residual sources. Food Chem. 72, 145-171. https://doi.org/10.1016/S0308-8146(00)00223-5
  28. Ohnighi, M., Morishita, H., Iwahashi, H., Toda, S., Shirataki, Y., Kimur, M., and Kido, R. (1994) Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochem. 36, 579-583. https://doi.org/10.1016/S0031-9422(00)89778-2
  29. Osterlie, M. and Lerfall, J. (2005) Lycopene from tomato products added minced meat: effect on storage quality and colour. Food Res. Int. 38, 925-929. https://doi.org/10.1016/j.foodres.2004.12.003
  30. Pellegrini, N., Colombi, B., Salvatore, S., Brenna, O. V., Galaverna, G., Rio, D. D., Bianchi, M., Bennett, R. N., and Brighenti, F. (2007) Evaluation of antioxidant capacity of some fruit and vegetable foods: efficiency of extraction of a sequence of solvents. J. Sci. Food Agric. 87, 103-111. https://doi.org/10.1002/jsfa.2682
  31. Pokorny, J. (2001) Introduction. In Pokorny, J., Yanishlieva, N. and Gordon, M. H. (Eds.), Antioxidants in food: practical applications, Cambridge: Woodhead Publishing Limited, pp. 1-3.
  32. Rao, A. V. and Agarwal, S. (2000) Role of antioxidant lycopene in cancer and heart disease. J. Am. College Nutr. 19, 563-569. https://doi.org/10.1080/07315724.2000.10718953
  33. Rice-Evans, C. A., Miller, N. J., and Paganga, G. (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acid. Free Radical Biol. Med. 20, 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  34. Sanchez-Escalante, A., Torrescano, G., Djenane, D., Beltran, J. A., and Roncales, P. (2003) Combined effect of modified atmosphere packaging and addition of lycopene rich tomato pulp, oregano and ascorbic acid and their mixtures on the stability of beef patties. Food Sci. Technol. Int. 9, 77-84. https://doi.org/10.1177/1082013203009002002
  35. Senevirathne, M., Kim, S. H., Siriwardhana, N., Ha, J. H., Lee, K. W., and Jeon, Y. J. (2006) Antioxidant potential of Ecklonia cava on reactive oxygen species scavenging, metal chelating, reducing power and lipid peroxidation inhibition. Food Sci. Technol. Int. 12, 27-38. https://doi.org/10.1177/1082013206062422
  36. Shinnhuber, R. O. and Yu, T. C. (1977) The 2-thiobarbituric acid reaction, an objective measure of the oxidative deterioration occurring in fats and oils. J. Japan Oil Chem. Soc. 26, 259-267. https://doi.org/10.5650/jos1956.26.259
  37. Stewart, A. J., Bozonnet, S., Mullen, W., Jenkins, G. I., Lean, M. E. J., and Crozier, A. (2000) Occurrence of flavonols in tomatoes and tomato based products. J. Agric. Food Chem. 48, 2663-2669. https://doi.org/10.1021/jf000070p
  38. Tulipani, S., Huelamo, M. M., Ribalta, M. R., Estruch, R., Ferrer, E. E., Andres-Lacueva, C., Illan, M., and Lamuela-Raventós, R. M. (2012). Oil matrix effects on plasma exposure and urinary excretion of phenolic compounds from tomato sauces: Evidence from a human pilot study. Food Chem. 130, 581-590. https://doi.org/10.1016/j.foodchem.2011.07.078
  39. Vallverdu-Queralt, A., Regueiro, J., de Alvarenga, J. F. R., Torrado, X., and Lamuela-Raventos, M. (2014) Home cooking and phenolics: Effect of thermal treatment and addition of extra virgin olive oil on the phenolic profile of tomato sauces. J. Agric, Food Chem. 62, 3314-3320. https://doi.org/10.1021/jf500416n
  40. Villares, A., Guillamon, E., D'Arrigo, M., Martínez, J. A., García-Lafuente, A., and Ramos, A. (2012) Kinetic study of the inhibition of linoleic acid oxidation in aqueous media by phenolic compounds. Food Biophys. 7, 50-56. https://doi.org/10.1007/s11483-011-9242-z
  41. Yen, G. C. and Hsieh, C. L. (1998) Antioxidant activity of extracts from Du-zhong (Eucommiaulmoides) toward various lipid peroxidation models in vitro. J. Agric. Food Chem. 46, 3952-3957. https://doi.org/10.1021/jf9800458
  42. Zwietering, M. H., Wijtzes, T., Rombouts, F. M., and van't Riet, K. (1993) A decision support system for prediction of microbial spoilage in foods. J. Indust. Microbiol. 12, 324-329. https://doi.org/10.1007/BF01584209