DOI QR코드

DOI QR Code

Synthesis of cathode material for sodium ion batteries using dry vibration milling

건식 진동밀을 이용한 나트륨이온전지 양극활물질 합성

  • Lee, Yeon-Woo (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Han-Jun (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kang, Yeonhui (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Chang-Sam (Center for Energy Convergence, Korea Institute of Science and Technology)
  • 이연우 (한국과학기술연구원 에너지융합연구단) ;
  • 김한준 (한국과학기술연구원 에너지융합연구단) ;
  • 강연희 (한국과학기술연구원 에너지융합연구단) ;
  • 김창삼 (한국과학기술연구원 에너지융합연구단)
  • Received : 2017.04.18
  • Accepted : 2017.04.19
  • Published : 2017.04.30

Abstract

Two milling methods, dry vibration milling and wet ball milling, were used to prepare $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ powders as a cathode material for sodium ion batteries. The morphology and electrochemical property of the two powders with different milling processes were compared to each other. The particle size is less than $1{\mu}m$ in the dry vibration milled powder, while lots of larger particles than $1{\mu}m$ were found in the wet ball milled one. The single phase of $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$ was obtained in the temperature range of $875{\sim}900^{\circ}C$. The discharge capacity and discharge voltage of the powder prepared by the dry process were higher than those of one prepared by the wet process.

건식 진동밀과 습식 볼밀로 출발원료를 혼합/분쇄하여 나트륨이온전지용 양극활물질인 $Na_{2/3}(Ni_{1/3}Mn_{2/3})O_2$를 합성하여 특성을 비교하였다. 건식 진동밀로 혼합/분쇄한 분말은 습식 볼밀한 분말보다 더 미세한 $1{\mu}m$ 이하의 입자였으며, $875{\sim}900^{\circ}C$에서 열처리 하였을 때 단일상을 얻을 수 있었다. 또한 전지 특성도 건식 진동밀을 사용한 분말이 습식 공정으로 합성한 분말보다 방전용량이 크고 방전 전위도 높게 나왔다.

Keywords

References

  1. M.D. Slater, D. Kim, E. Lee and C.S. Johnson, "Sodium-ion batteries", Adv. Funct. Mater. 23 (2013) 947. https://doi.org/10.1002/adfm.201200691
  2. D.H. Lee, J. Xu and Y.S. Meng, "An advanced cathode for Na-ion batteries with high rate and excellent structural stability", Phys. Chem. Chem. Phys. 15 (2013) 3304. https://doi.org/10.1039/c2cp44467d
  3. R.J. Clement, P.G. Bruce and C.P. Grey, "Review-manganese- based P2-type transition metal oxides as sodiumion battery cathode materials", J. Electrochem. Soc. 162 (2015) A2589. https://doi.org/10.1149/2.0201514jes
  4. H.T. Kim, S.I. Kim, H.L. Choi, W.I. Park and C.S. Kim, "Effect of Zn/NaCl ratios on the charge/discahrge performance in $Na-ZnCl_2$ battery", J. Korean Cryst. Growth Cryst. Technol. 25 (2015) 74. https://doi.org/10.6111/JKCGCT.2015.25.2.074
  5. S. Kim, D. Seo, X. Ma, G. Ceder and K. Kang, "Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries", Adv. Energy Mater. 2 (2012) 710. https://doi.org/10.1002/aenm.201200026
  6. H. Pan, Y. Hu and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage", Energy & Environmental Science 6 (2013) 2338. https://doi.org/10.1039/c3ee40847g
  7. J. Qian, X. Wu, Y. Cao, X. Ai and H. Yang, "High capacity and rate capability of amorphous phosphorus for sodium ion batteries", Angew. Chem. Int. Ed. 125 (2013) 4731. https://doi.org/10.1002/ange.201209689
  8. Y. Park, D. Seo, H. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H. Yoo and K. Kang, "A new high-energy cathode for a Na-ion battery with ultrahigh stability", J. Am. Chem. Soc. 135 (2013) 13870. https://doi.org/10.1021/ja406016j
  9. X. Ma, H. Chen and G. Ceder, "Electrochemical properties of monoclinic $NaMnO_2$", J. Electrochem. Soc. 158 (2011) A1307. https://doi.org/10.1149/2.035112jes
  10. S.H. Kim, D.S. Bae, C. Kim and J.G. Lee, "Na-ion anode based on $Na(Li,Ti)O_2$ system: Effects of Mg addition", J. Kor. Ceram. Soc. 53 (2016) 282. https://doi.org/10.4191/kcers.2016.53.3.282