DOI QR코드

DOI QR Code

Corrosion of castable refractory in H2O/N2/H2S mixed gas at 900℃

H2O/N2/H2S 혼합가스 분위기 900℃에서 캐스타블 내화물의 부식

  • Shin, Min (Department of Advanced Materials Science and Engineering, Dankook University) ;
  • Yoon, Jong-Won (Department of Advanced Materials Science and Engineering, Dankook University) ;
  • Kim, Chang-Sam (Center for Energy Convergence, Korea Institute of Science and Technology)
  • 신민 (단국대학교 신소재공학과) ;
  • 윤종원 (단국대학교 신소재공학과) ;
  • 김창삼 (한국과학기술연구원 에너지융합연구단)
  • Received : 2017.02.15
  • Accepted : 2017.03.15
  • Published : 2017.04.30

Abstract

Refractories used in low-rank coal gasification reactors are usually exposed in a highly corrosive $H_2S$ gas at less than $1000^{\circ}C$, and their mechanical properties such as erosion resistance and fracture strength decline with the exposure time. However, the cause of the degradation of the mechanical properties has little reported yet. In this paper, two kinds of castable refractories with different refractoriness had been exposed in a $H_2O/N_2/H_2S$ mixed gas with high $H_2S$ content for 100 hours at $900^{\circ}C$, and the changes of microstructure, crystalline phases and erosion resistance were compared before and after the corrosion test. The weight of the refractories decreases due to the elution of silica in the specimens after the corrosion test. The capillary porosities of the samples are reduced, but the erosion resistance of the samples is fatally weakened after the corrosion test. There also are changes in constituent phases; dmitryivanovite ($CaAl_2O_4$) and amorphous silica ($SiO_2$) disappear, and gypsum ($CaSO_4{\cdot}2H_2OS$) and kaolinite ($Al_2Si_2O_5(OH)_4$) newly appear after the corrosion test. It is obvious that the phase change from dmitryivanovite that works as a binding agent in the castable refractory to gypsum is the main reason of the degradation of the erosion resistance, because the mechanical properties of gypsum are much poorer than those of dmitryivanovite.

저급탄을 가스화하는 반응기에 사용되는 내화물은 고온에서 부식성이 강한 $H_2S$ 가스에 노출되며, 경도나 내마모성과 같은 기계적 특성이 가스에 노출되는 시간이 길어짐에 따라서 떨어진다. 그러나 $H_2S$ 가스에 의한 내화물의 기계적 특성 약화 원인이 아직 잘 알려져 있지 않다. 본 실험에서는 내화도가 다른 두 종류의 케스터블 내화물을 $H_2S$ 농도가 높은 $H_2O/N_2/H_2S$ 혼합가스에 100시간 동안 $900^{\circ}C$에서 노출시키고, 미세구조, 결정상과 내마모 특성 변화를 비교하였다. 혼합가스에 노출되면서 내화물 시편의 무게는 감소하였다. 노출 후 기공률은 감소하고, 내마모 특성은 현저하게 떨어졌다. 부식에 의해서 내화물을 구성하는 상에 변화가 일어났는데, $CaAl_2O_4$와 일부의 $SiO_2$는 사라지고 $CaSO_4{\cdot}2H_2OS$$Al_2Si_2O_5(OH)_4$ 상이 나타났다. 내화물의 내마모 특성이 $H_2S$ 가스에 노출된 후에 감소하는 주 원인은 캐스터블 내화물에서 결합제 역할을 하는 $CaAl_2O_4$가 사라지고 기계적 특성이 나쁜 $CaSO_4{\cdot}2H_2OS$가 생성되기 때문인 것으로 생각되었다.

Keywords

References

  1. C. Chen, M. Horio and T. Kojima, "Numerical simulation of entrained flow coal gasifiers. Part I: Modelling of coal gasification in an entrained flow gasifier", Chem. Eng. Sci. 55 (2000) 3861. https://doi.org/10.1016/S0009-2509(00)00030-0
  2. P. Chiesa, S. Consonni, T. Kreutz and R. Williams, "Coproduction of hydrogen electricity and $CO_2$ from coal with commercially ready technology part A: Performance and emissions", Int. J. Hydrogen Energy 30 (2005) 747. https://doi.org/10.1016/j.ijhydene.2004.08.002
  3. S.H. Kang, J.H. Ryu, S.N. Park, Y.S. Byun, S.J. Seo, Y. Yun, J.W. Lee, Y.J. Kim, J.H. Kim and S.R. Park, "Kinetic studies of pyrolysis and Char-$CO_2$ gasification on low rank coals", Korean Chem. Eng. Res. 49 (2011) 114. https://doi.org/10.9713/kcer.2011.49.1.114
  4. G. Sukul and P.V. Balaramakrishna, "A reivew of refractory linings for gasification reactions", J. Aust. Ceram. Soc. 50 (2014) 83.
  5. D.P. Ye, J.B. Agnew and D.K. Zhang, "Gasification of a south australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies", Fuel 77 (1998) 1209. https://doi.org/10.1016/S0016-2361(98)00014-3
  6. S.A. Benson, M.L. Jones and J.N. Harb, "Fundamentals of coal combustion for clean and efficient use", D. Smoot, Ed. (Elservier, Amsterdam, 1993) p. 299.
  7. M. Sin, J.W. Yoon and C.S. Kim, "Effects of the incidence angels of solid particles on the erosion of castable refractories", J. Korean Cryst. Growth Cryst. Technol. 25 (2015) 1. https://doi.org/10.6111/JKCGCT.2015.25.1.001
  8. O.O. Van Der Biest, J. Barnes, J. Corish and J.F. Norton, "Corrosion of a silica-bearing ceramics in sulfuroxygen atmospheres", J. Am. Ceram. Soc. 70 (1987) 456. https://doi.org/10.1111/j.1151-2916.1987.tb05675.x
  9. M. Santhanam, D.C. Mesnashi and J. Olek, "Sulfate attack research-whither now?", Cement and Concrete Research 31 (2001) 845. https://doi.org/10.1016/S0008-8846(01)00510-5
  10. R.A. Gardner, "The kinetics of silica reduction in hydrogen", J. Solid State Chem. 9 (1974) 336. https://doi.org/10.1016/0022-4596(74)90092-9
  11. K. Fukuda, M. Dokiya, T. Kameyama and Y. Kotera, "Catalytic decomposition of hydrogen sulfide", Ind. Eng. Chem. Fundam. 17 (1978) 243. https://doi.org/10.1021/i160068a002
  12. D. Woiki and P. Roth, "Kinetics of the high-temperature $H_2S$ decomposition", J. Phys. Chem. 98 (1994) 12958. https://doi.org/10.1021/j100100a024
  13. G. Sirokman, "Synthesis, dehydration, and rehydration of calcium sulfate (gypsum, plaster of paris)", J. Chemeduc 91 (2014) 557.
  14. O. Kirca, O. Yaman and M. Tokyay, "Compressive strength development of calcium aluminate cement-GGBFS blends", Cem. Concr. Compos. 35 (2013) 163. https://doi.org/10.1016/j.cemconcomp.2012.08.016
  15. C.M.P. Correia and M.F. Souza, "Mechanical strength and thermal conductivity of low-porosity gypsum plates", Mater. Res. 12 (2009) 95. https://doi.org/10.1590/S1516-14392009000100012