참고문헌
- Akaike, H. (1973). "Information theory and an extension of the maximum likelihood principle." Second International Symposium on Information Theory, edited by B. N. Petrov and F. Csaki, pp. 267-281, Acad. Kiado', Budapest.
- Breaker, L. C., and Ruzmaikim, A. (2011). "The 154-year record of sea level at San Francisco: extracting the long-term trend, recent changes, and other tidbits." Climate Dynamics, Vol. 36, No. 3-4, pp. 545-559. https://doi.org/10.1007/s00382-010-0865-4
- Chen, P. C., Wang, Y. H., You, G. J. Y., and Wei, C. C. (2017). "Comparison of methods for non-stationary hydrologic frequency analysis: Case study using annual maximum daily precipitation in Taiwan." Journal of Hydrology, Vol. 545, pp. 197-211. https://doi.org/10.1016/j.jhydrol.2016.12.001
- Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer, London.
- Di, C., Yang, X., and Wang, X. (2014). "A four-stage hybrid model for hydrologic time series forecasting." PLoS ONE Vol. 9, Issue 8, e104663. doi: 10.1371/journal.pone.0104663
- Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., and Liu, H. H. (1998). "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis." Proceedings of the Royal Society of London. Series A, Vol. 454, pp. 903-995.
- Huang, N. E., and Wu, Z. (2008). "A review on Hilbert-Huang transform: method and its applications to geophysical studies." Review of Geophysics, Vol. 46, RG2006.
- Intergovernmental Panel on Climate Change (2014). "Climate Change 2014: Synthesis Report." Contribution of Working Groups I, II, and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri, and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.
- Jain, S., and Lall, U. (2000). "Magnitude and timing of annual maximum floods: Trends and large-scale climatic associations for the Blacksmith Fork river, Utah." Water Resources Research, Vol. 36, No. 12, pp. 3641-3651. https://doi.org/10.1029/2000WR900183
- Jang, H., Kim, S., and Heo, J. H. (2015). "Comparison study on the various forms of scale parameter for the nonstationary Gumbel model." Journal of Korea Water Resources Association, Vol. 48, No. 5, pp. 331-343. https://doi.org/10.3741/JKWRA.2015.48.5.331
- Katz, R. W., (2013). "Statistical Methods for Nonstationary Extremes." In: Extremes in a Changing Climate, Edited by AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., and Sorrooshian, S., Chapter 2, Springer, London.
- Kim, Y., and Cho, K. (2016). "Sea level rise around Korea: Analysis of tide gauge station data with the ensemble empirical mode decomposition method." Journal of Hydro-environment Research, Vol. 11, pp. 138-145. https://doi.org/10.1016/j.jher.2014.12.002
- Kim, T., Shin, H., Nam, W., and Heo, J. H. (2015). "A study on the predictive power improvement of time series model using empirical mode decomposition method." Journal of Korea Water Resources Association, Vol. 48, No. 12, pp. 981-993. https://doi.org/10.3741/JKWRA.2015.48.12.981
- Korea Meteorological Administration (2014). "Korean Climate Change Assessment Report 2014."
- Kullback, S., and Leibler, R. A. (1951). "On information and sufficiency." Annals of Mathematical Statistics, Vol. 22, No. 1, pp. 79-86. https://doi.org/10.1214/aoms/1177729694
- Kwon, H. H., and Lee, J. J. (2011). "Seasonal rainfall outlook of Nakdong river basin using nonstationary frequency analysis model and climate information." Journal of Korea Water Resources Association, Vol. 44, No. 5, pp. 339-350. https://doi.org/10.3741/JKWRA.2011.44.5.339
- Laio, F., Baldassarre, G. D., and Montanari, A. (2009). "Model selection techniques for the frequency analysis of hydrological extremes." Water Resources Research, Vol. 45, No. 7, W07416. https://doi.org/10.1029/2007WR006666
- Leadbetter, M. R., Lindren, G., and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, New York.
- Lee, J. J., Kwon, H. H., and Hwang, K. N. (2010). "Concept of seasonality analysis of hydrologic extreme variables and design rainfall estimation using nonstationary frequency analysis." Journal of Korea Water Resources Association, Vol. 43, No. 8, pp. 733-745. https://doi.org/10.3741/JKWRA.2010.43.8.733
- Lee, T., Ouarda, T. B. M. J., and Li, J. (2013). "An orchestrated climate song from the Pacific Atlantic Oceans and its implication on climatological process." International Journal of Climatology, Vol. 33, pp. 1015-1020. https://doi.org/10.1002/joc.3488
- Milly, P. C. D., Betancourt, J., Falkenmark, M., Hirsch, R. M., Kundzewicz, Z. W., Lettenmaier, D. P., and Stouffer, R. J. (2008). "Stationarity Is Dead: Whither Water Management?" Science, Vol. 319, pp. 573-574. https://doi.org/10.1126/science.1151915
- O'Brien, N. L., and Burn, D. H. (2014). "A nonstationary index-flood technique for estimating extreme quantiles for annual maximum streamflow." Journal of Hydrology, Vol. 519, pp. 2040-2048. https://doi.org/10.1016/j.jhydrol.2014.09.041
- Olsen, J. R., Stedinger, J. R., Matalas, N. C., and Stakhiv, E. Z. (1999). "Climate variability and flood frequency estimation for the upper Mississippi and lower Missouri Rivers." Journal of the American Water Resources Association, Vol. 36, No. 6, pp. 1509-1523.
- Sang, Y. F., Wang, Z., and Liu, C. (2014). "Comparison of the MK test and EMD method for trend identification in hydrological time series." Journal of Hydrology, Vol. 510, pp. 293-298. https://doi.org/10.1016/j.jhydrol.2013.12.039
- Shin, H., Ahn, H., and Heo, J. H. (2014). "A study on the changes of return period considering nonstationarity of rainfall data." Journal of Korea Water Resources Association, Vol. 47, No. 5, pp. 447-457. https://doi.org/10.3741/JKWRA.2014.47.5.447
- Tramblay, Y., Neppel, L., Carreau, J., and Najib, K. (2013). "Nonstationary frequency analysis of heavy rainfall events in southern France." Hydrological Sciences Journal, Vol. 58, No. 2, pp. 280-294. https://doi.org/10.1080/02626667.2012.754988
- Vasiliades, L., Galiatsatou, P., and Loukas, A. (2015). "Nonstationary frequency analysis of annual maximum rainfall using climate covariates." Water Resources Management, Vol. 29, No. 2, pp. 339-358. https://doi.org/10.1007/s11269-014-0761-5
- Villarini, G., Smith, J. A., and Napolitano, F. (2010). "Nonstationary modeling of a long record of rainfall and temperature over Rome." Advanced in Water Resources, Vol. 33, No. 10, pp. 1256-1267. https://doi.org/10.1016/j.advwatres.2010.03.013
- Villarini, G., Smith, J. A., Serinaldi, F., Bales, J., Bates, P. D., and Krajewski, W. F. (2009). "Flood frequency analysis for nonstationary annual peak records in an urban drainage basin." Advanced in Water Resources, Vol. 32, No. 8, pp. 1255-1266. https://doi.org/10.1016/j.advwatres.2009.05.003
- Wang, W. C., Chau, K. W., Xu, D. M., and Chen, X. Y. (2015). "Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition." Water Resources Management, Vol. 29, pp. 2655-2675. https://doi.org/10.1007/s11269-015-0962-6
- Wi, S., Valdés, J. B., Steinschneider, S., and Kim, T. W. (2016). "Non-stationary frequency analysis of extreme precipitation in South Korea using peaks-over-threshold and annual maxima." Stochastic Environmental Research and Risk Assessment, Vol. 30, No. 2, pp. 583-606. https://doi.org/10.1007/s00477-015-1180-8
- Wu, Z., and Huang, N. E. (2004). "A study of the characteristics of white noise using the empirical mode decomposition method." Proceedings of the Royal Society of London. Series A, Vol. 460, pp. 1597-1611. https://doi.org/10.1098/rspa.2003.1221
- Wu, Z., and Huang, N. E. (2009). "Ensemble empirical mode decomposition: a noise-assisted data analysis method." Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp.1-41. https://doi.org/10.1142/S1793536909000047
- Wu, Z., Huang, N. E., Long, S. R., and Peng, C. K. (2007). "On the trend, detrending, and variability of nonlinear and nonstationary time series." Proceedings of the National Academy of Sciences, Vol. 104, pp. 14889-14894. https://doi.org/10.1073/pnas.0701020104