DOI QR코드

DOI QR Code

microRNA-200a-3p enhances mitochondrial elongation by targeting mitochondrial fission factor

  • Lee, Heejin (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Tak, Hyosun (Department of Biochemistry, College of Medicine, The Catholic University of Korea) ;
  • Park, So Jung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jo, Yoon Kyung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Cho, Dong Hyung (Department of Gerontology, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Eun Kyung (Department of Biochemistry, College of Medicine, The Catholic University of Korea)
  • Received : 2017.01.14
  • Accepted : 2017.01.31
  • Published : 2017.04.30

Abstract

Mitochondria play pivotal roles in the ATP production, apoptosis and generation of reactive oxygen species. Although dynamic regulation of mitochondria morphology is a critical step to maintain cellular homeostasis, the regulatory mechanisms are not yet fully elucidated. In this study, we identified miR-200a-3p as a novel regulator of mitochondrial dynamics by targeting mitochondrial fission factor (MFF). We demonstrated that the ectopic expression of miR-200a-3p enhanced mitochondrial elongation, mitochondrial ATP synthesis, mitochondrial membrane potential and oxygen consumption rate. These results indicate that miR-200a-3p positively regulates mitochondrial elongation by downregulating MFF expression.

Keywords

References

  1. Detmer SA and Chan DC (2007) Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Bio 8, 870-879 https://doi.org/10.1038/nrm2275
  2. Suen D-F, Norris KL and Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22, 1577-1590 https://doi.org/10.1101/gad.1658508
  3. Bereiter-Hahn J and Jendrach M (2010) Mitochondrial dynamics. Int Rev Cell Mol Biol 284, 1-65
  4. Ni HM, Williams JA and Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4, 6-13 https://doi.org/10.1016/j.redox.2014.11.006
  5. Zorzano A, Liesa M, Sebastian D, Segales J and Palacin M (2010) Mitochondrial fusion proteins: dual regulators of morphology and metabolism. Semin Cell Dev Biol 21, 566-574 https://doi.org/10.1016/j.semcdb.2010.01.002
  6. Hyde BB, Twig G and Shirihai OS (2010) Organellar vs cellular control of mitochondrial dynamics. Semin Cell Dev Biol 21, 575-581 https://doi.org/10.1016/j.semcdb.2010.01.003
  7. Kuzmicic J, Del Campo A, Lopez-Crisosto C et al (2011) [Mitochondrial dynamics: a potential new therapeutic target for heart failure]. Rev Esp Cardiol 64, 916-923 https://doi.org/10.1016/j.recesp.2011.05.018
  8. Gomes LC and Scorrano L (2013) Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833, 205-212 https://doi.org/10.1016/j.bbamcr.2012.02.012
  9. Chang CR and Blackstone C (2010) Dynamic regulation of mitochondrial fission through modification of the dynaminrelated protein Drp1. Ann NY Acad Sci 1201, 34-39 https://doi.org/10.1111/j.1749-6632.2010.05629.x
  10. Kashatus JA, Nascimento A, Myers LJ et al (2015) Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57, 537-551 https://doi.org/10.1016/j.molcel.2015.01.002
  11. Samant SA, Zhang HJ, Hong Z et al (2014) SIRT3 deacetylates and activates OPA1 to regulate mitochondrial dynamics during stress. Mol Cell Biol 34, 807-819 https://doi.org/10.1128/MCB.01483-13
  12. Escobar-Henriques M (2014) Mitofusins: ubiquitylation promotes fusion. Cell Res 24, 387-388 https://doi.org/10.1038/cr.2014.23
  13. Ke XS, Liu CM, Liu DP and Liang CC (2003) MicroRNAs: key participants in gene regulatory networks. Curr Opin Chem Biol 7, 516-523 https://doi.org/10.1016/S1367-5931(03)00075-9
  14. Ma J, Lin Y, Zhan M, Mann DL, Stass SA and Jiang F (2015) Differential miRNA expressions in peripheral blood mononuclear cells for diagnosis of lung cancer. Lab Invest 95, 1197-1206 https://doi.org/10.1038/labinvest.2015.88
  15. Sun J, Sonstegard TS, Li C et al (2015) Altered microRNA expression in bovine skeletal muscle with age. Anim Genet 46, 227-238 https://doi.org/10.1111/age.12272
  16. Kaviani M, Azarpira N, Karimi MH and Al-Abdullah I (2016) The role of microRNAs in islet beta-cell development. Cell Biol Int 40, 1248-1255 https://doi.org/10.1002/cbin.10691
  17. Achkar NP, Cambiagno DA and Manavella PA (2016) miRNA Biogenesis: A Dynamic Pathway. Trends Plant Sci 21, 1034-1044
  18. Shah MY, Ferrajoli A, Sood AK, Lopez-Berestein G and Calin GA (2016) microRNA Therapeutics in Cancer - An Emerging Concept. EBioMedicine 12, 34-42 https://doi.org/10.1016/j.ebiom.2016.09.017
  19. Feng J, Xing W and Xie L (2016) Regulatory Roles of MicroRNAs in Diabetes. Int J Mol Sci 17
  20. Catalanotto C, Cogoni C and Zardo G (2016) MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci 17, 1712 https://doi.org/10.3390/ijms17101712
  21. Geiger J and Dalgaard LT (2017) Interplay of mitochondrial metabolism and microRNAs. Cell Mol Life Sci 74, 631-646 https://doi.org/10.1007/s00018-016-2342-7
  22. Moss EG (2002) MicroRNAs: hidden in the genome. Curr Biol 12, R138-140 https://doi.org/10.1016/S0960-9822(02)00708-X
  23. Donzelli S, Cioce M, Muti P, Strano S, Yarden Y and Blandino G (2016) MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Semin Cell Dev Biol 50, 133-142 https://doi.org/10.1016/j.semcdb.2015.12.020
  24. Mishra P and Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212, 379-387 https://doi.org/10.1083/jcb.201511036
  25. Kamiya Y, Kawada J, Kawano Y et al (2015) Serum microRNAs as Potential Biomarkers of Juvenile Idiopathic Arthritis. Clin Rheumatol 34, 1705-1712 https://doi.org/10.1007/s10067-015-2922-1
  26. Song MA, Paradis AN, Gay MS, Shin J and Zhang L (2015) Differential expression of microRNAs in ischemic heart disease. Drug Discov Today 20, 223-235 https://doi.org/10.1016/j.drudis.2014.10.004
  27. Irwandi RA and Vacharaksa A (2016) The role of microRNA in periodontal tissue: A review of the literature. Arch Oral Biol 72, 66-74 https://doi.org/10.1016/j.archoralbio.2016.08.014
  28. Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R and El-Hage N (2016) Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 23, 74 https://doi.org/10.1186/s12929-016-0292-x
  29. Fan S, Chen WX, Lv XB et al (2015) miR-483-5p determines mitochondrial fission and cisplatin sensitivity in tongue squamous cell carcinoma by targeting FIS1. Cancer Lett 362, 183-191 https://doi.org/10.1016/j.canlet.2015.03.045
  30. Wang K, Long B, Jiao JQ et al (2012) miR-484 regulates mitochondrial network through targeting Fis1. Nat Commun 3, 781 https://doi.org/10.1038/ncomms1770
  31. Wang JX, Jiao JQ, Li Q et al (2011) miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med 17, 71-78 https://doi.org/10.1038/nm.2282
  32. Guan X, Wang L, Liu Z et al (2016) miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. J Mol Cell Cardiol 99, 207-217 https://doi.org/10.1016/j.yjmcc.2016.08.016
  33. Joshi SR, Dhagia V, Gairhe S, Edwards JG, McMurtry IF and Gupte SA (2016) MicroRNA-140 is elevated and mitofusin-1 is downregulated in the right ventricle of the Sugen5416/hypoxia/normoxia model of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol 311, H689-698 https://doi.org/10.1152/ajpheart.00264.2016
  34. Zhang R, Zhou H, Jiang L et al (2016) MiR-195 dependent roles of mitofusin2 in the mitochondrial dysfunction of hippocampal neurons in SAMP8 mice. Brain Res 1652, 135-143 https://doi.org/10.1016/j.brainres.2016.09.047
  35. Zhou X, Zhang L, Zheng B et al (2016) MicroRNA-761 is upregulated in hepatocellular carcinoma and regulates tumorigenesis by targeting Mitofusin-2. Cancer Sci 107, 424-432 https://doi.org/10.1111/cas.12904
  36. Li X, Wang FS, Wu ZY, Lin JL, Lan WB and Lin JH (2014) MicroRNA-19b targets Mfn1 to inhibit Mfn1-induced apoptosis in osteosarcoma cells. Neoplasma 61, 265-273 https://doi.org/10.4149/neo_2014_034
  37. Zhou X, Zuo S and Xin W (2015) miR-27b overexpression improves mitochondrial function in a Sirt1-dependent manner. J Physiol Biochem 71, 753-762 https://doi.org/10.1007/s13105-015-0439-3
  38. Fan S, Liu B, Sun L et al (2015) Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis. Oncotarget 6, 14885-14904
  39. Long B, Wang K, Li N et al (2013) miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radic Biol Med 65, 371-379 https://doi.org/10.1016/j.freeradbiomed.2013.07.009
  40. Toyama EQ, Herzig S, Courchet J et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351, 275-281 https://doi.org/10.1126/science.aab4138
  41. Tak H, Kim J, Jayabalan AK et al (2014) miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor. Exp Mol Med 46, e123 https://doi.org/10.1038/emm.2014.73
  42. Bose A and Beal MF (2016) Mitochondrial dysfunction in Parkinson's disease. J Neurochem 139 Suppl 1, 216-231 https://doi.org/10.1111/jnc.13731
  43. Lee H and Yoon Y (2016) Mitochondrial fission and fusion. Biochem Soc Trans 44, 1725-1735 https://doi.org/10.1042/BST20160129
  44. Silva Ramos E, Larsson NG and Mourier A (2016) Bioenergetic roles of mitochondrial fusion. Biochim Biophys Acta 1857, 1277-1283 https://doi.org/10.1016/j.bbabio.2016.04.002
  45. Wada J and Nakatsuka A (2016) Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes. Acta Med Okayama 70, 151-158
  46. Chen H and Chan DC (2009) Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 18, R169-R176 https://doi.org/10.1093/hmg/ddp326
  47. Cho DH, Nakamura T and Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67, 3435-3447 https://doi.org/10.1007/s00018-010-0435-2
  48. Rehman J, Zhang HJ, Toth PT et al (2012) Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26, 2175-2186 https://doi.org/10.1096/fj.11-196543
  49. Saita S, Ishihara T, Maeda M et al (2016) Distinct types of protease systems are involved in homeostasis regulation of mitochondrial morphology via balanced fusion and fission. Genes Cells 21, 408-424 https://doi.org/10.1111/gtc.12351
  50. Xu Y, Zhao C, Sun X, Liu Z and Zhang J (2015) MicroRNA-761 regulates mitochondrial biogenesis in mouse skeletal muscle in response to exercise. Biochem Biophys Res Commun 467, 103-108 https://doi.org/10.1016/j.bbrc.2015.09.113
  51. Brabletz S and Brabletz T (2010) The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep 11, 670-677 https://doi.org/10.1038/embor.2010.117
  52. Bracken CP, Gregory PA, Kolesnikoff N et al (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68, 7846-7854 https://doi.org/10.1158/0008-5472.CAN-08-1942
  53. Hill L, Browne G and Tulchinsky E (2013) ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer 132, 745-754 https://doi.org/10.1002/ijc.27708
  54. Cong N, Du P, Zhang A et al (2013) Downregulated microRNA-200a promotes EMT and tumor growth through the wnt/beta-catenin pathway by targeting the E-cadherin repressors ZEB1/ZEB2 in gastric adenocarcinoma. Oncol Rep 29, 1579-1587 https://doi.org/10.3892/or.2013.2267
  55. Sulaiman SA, Ab Mutalib NS and Jamal R (2016) miR-200c Regulation of Metastases in Ovarian Cancer: Potential Role in Epithelial and Mesenchymal Transition. Front Pharmacol 7, 271
  56. Diaz T, Tejero R, Moreno I et al (2014) Role of miR-200 family members in survival of colorectal cancer patients treated with fluoropyrimidines. J Surg Oncol 109, 676-683 https://doi.org/10.1002/jso.23572
  57. Koutsaki M, Spandidos DA and Zaravinos A (2014) Epithelial-mesenchymal transition-associated miRNAs in ovarian carcinoma, with highlight on the miR-200 family: prognostic value and prospective role in ovarian cancer therapeutics. Cancer Lett 351, 173-181 https://doi.org/10.1016/j.canlet.2014.05.022
  58. Chen C, Yang D, Wang Q and Wang X (2015) Expression and Clinical Pathological Significance of miR-200a in Concurrent Cholangiocarcinoma Associated with Hepatolithiasis. Med Sci Monit 21, 3585-3590 https://doi.org/10.12659/MSM.895013
  59. Dhayat SA, Mardin WA, Kohler G et al (2014) The microRNA-200 family--a potential diagnostic marker in hepatocellular carcinoma? J Surg Oncol 110, 430-438 https://doi.org/10.1002/jso.23668
  60. Leskela S, Leandro-Garcia LJ, Mendiola M et al (2011) The miR-200 family controls beta-tubulin III expression and is associated with paclitaxel-based treatment response and progression-free survival in ovarian cancer patients. Endocr Relat Cancer 18, 85-95
  61. Li H, Tang J, Lei H et al (2014) Decreased MiR-200a/141 suppress cell migration and proliferation by targeting PTEN in Hirschsprung's disease. Cell Physiol Biochem 34, 543-553 https://doi.org/10.1159/000363021
  62. Zuberi M, Mir R, Das J et al (2015) Expression of serum miR-200a, miR-200b, and miR-200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features. Clin Transl Oncol 17, 779-787 https://doi.org/10.1007/s12094-015-1303-1

Cited by

  1. Mitochondrial morphofunction in mammalian cells pp.1557-7716, 2018, https://doi.org/10.1089/ars.2018.7534
  2. miR-376b-3p attenuates mitochondrial fission and cardiac hypertrophy by targeting mitochondrial fission factor vol.45, pp.8, 2018, https://doi.org/10.1111/1440-1681.12938