DOI QR코드

DOI QR Code

Magnetic Resonance and Electromagnetic Wave Absorption of Metamaterial Absorbers Composed of Split Cut Wires in THz Frequency Band

THz 대역에서 Cut Wire로 구성된 메타소재의 자기공진 및 전파흡수특성

  • Ryu, Yo-Han (Department of Advanced Materials Engineering, Chungbuk National University) ;
  • Kim, Sung-Soo (Department of Advanced Materials Engineering, Chungbuk National University)
  • 류요한 (충북대학교 신소재공학과) ;
  • 김성수 (충북대학교 신소재공학과)
  • Received : 2017.03.31
  • Accepted : 2017.04.18
  • Published : 2017.04.30

Abstract

Metamaterials composed of split cut wire (SCW) on grounded polyimide film substrate have been investigated for the aim of electromagnetic wave absorbers operated in THz frequency band. Reflection loss and current density distributions are numerically simulated with variations of the SCW geometries using the commercial software. The minimum reflection loss lower than -20 dB has been identified at 5.5~6.5 THz. The simulated resonance frequency and reflection loss can be explained on the basis of the circuit theory of an inductance-capacitance (L-C) resonator. Dual-band absorption can be obtained by arrangement of two SCWs of different length on the top layer of the grounded substrate, which is due to multiple magnetic resonances by scaling of SCWs. With increasing the side spacing between SCWs, a more enhanced absorption peak is observed at the first resonance frequency that is shifted to a lower frequency.

THz 대역 전파흡수체를 구현하기 위해 split cut wire(SCW)와 배면 도체로 구성되는 단위 셀 구조를 제안하였다. 배면이 금속으로 단락된 유전체 기판 상에 SCW가 배열된 메타소재에서 SCW의 길이와 폭을 조절하여 THz 대역에서 완전 전파흡수체(5.5~6.0 THz에서 반사손실 -20 dB 이하)의 구현이 가능하였고, 인덕턴스-커패시턴스 (L-C) 공진기 회로이론으로 이를 설명하였다. 길이가 서로 다른 두 개의 SCW를 하나의 단위 셀 안에 같이 배치함으로써 두 개의 흡수 피크를 얻을 수 있었다. SCW 간의 간격이 넓어짐에 따라 두 번째 공진주파수는 거의 변화가 없지만 첫 번째 공진주파수는 저주파로 이동하면서 반사손실 값이 현저히 감소하는 경향이 나타났다.

Keywords

References

  1. B. Ferguson and X.-C. Zhang, Nature Mater. 1, 26 (2002). https://doi.org/10.1038/nmat708
  2. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 30 (2006).
  3. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor, and R. D. Averitt, Phys. Rev. B 75, 041102(R) (2007).
  4. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004). https://doi.org/10.1126/science.1094025
  5. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006). https://doi.org/10.1103/PhysRevLett.96.107401
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, Phys. Rev. Lett. 100, 207402 (2008). https://doi.org/10.1103/PhysRevLett.100.207402
  7. C. Hu, X. Li, Q. Feng, X. Chen, and X. Luo, Opt. Express 18, 6598 (2010). https://doi.org/10.1364/OE.18.006598
  8. R. F. Huang, Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, PIER B 14, 407 (2009). https://doi.org/10.2528/PIERB09040902
  9. V. D. Lam, J. B. Kim, S. J. Lee, and Y. P. Lee, Opt. Express 15, 16651 (2007). https://doi.org/10.1364/OE.15.016651
  10. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, Phys. Rev. B 78, 241103(R) (2008). https://doi.org/10.1103/PhysRevB.78.241103
  11. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, Opt. Express 16, 7181 (2008). https://doi.org/10.1364/OE.16.007181
  12. A. K. Azad, A. J. Taylor, E. Smirnova, and J. F. O'Hara, Appl. Phys. Lett. 92, 011119 (2008). https://doi.org/10.1063/1.2829791
  13. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, Phys. Rev. B 79, 125104 (2009). https://doi.org/10.1103/PhysRevB.79.125104
  14. H. Zhou, F. Ding, Y. Jin, and S. L. He, PIER 119, 449 (2011). https://doi.org/10.2528/PIER11061304
  15. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, Opt. Express 20, 635 (2012). https://doi.org/10.1364/OE.20.000635
  16. Ansoft Co. web-site: "http://www.ansoft.co.kr/", Korea.
  17. F. Costa and A. Monorchio, IEEE Trans. Antennas Propag. 60, 4650 (2012). https://doi.org/10.1109/TAP.2012.2207318
  18. F. Costa, S. Genovesi, A. Monorchio, and G. Manara, IEEE Trans. Antennas Propag. 61, 1201 (2013). https://doi.org/10.1109/TAP.2012.2227923