DOI QR코드

DOI QR Code

Anti-fatigue effect of a cucumber vinegar beverage on rats after high-intensity exercise

고강도 운동을 실시한 흰쥐에 대한 오이식초음료의 항피로 효과

  • Cho, Hyun Dong (Department of Food Science and Biotechnology, Kyungpook National University) ;
  • Kim, Jeong Ho (Department of Food and Nutrition, Sunchon National University) ;
  • Lee, Ju Hye (Functional Food and Nutrition Division, Dept. of Agro-Food Resource, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hong, Seong Min (Institute of Agricultural Life Sciences, Dong-A University) ;
  • Yee, Sung Tae (Department of Pharmacy, Sunchon National University) ;
  • Seo, Kwon Il (Department of Biotechnology, Dong-A University)
  • Received : 2016.10.10
  • Accepted : 2016.12.05
  • Published : 2017.04.30

Abstract

We evaluated the effect of cucumber vinegar (CV) on fatigue accumulation in rats that performed high-intensity exercise. The rats were randomly assigned to 3 groups: sedentary control (SC), exercise control (EC), and CV. Body weights were higher in groups EC and CV than in group SC. Organ weights in group CV did not differ from those in group SC. Running time was significantly longer in group CV than in the other groups. Compared to group EC, cucumber vinegar administration markedly decreased serum concentrations of ammonia, inorganic phosphate, and ${{\small}L}$-lactate. The activities of serum creatine kinase and lactate dehydrogenase were significantly lower in group CV than in groups SC and EC. Glycogen contents in the muscle and liver were higher in group CV than in groups SC and EC. These results suggest that cucumber vinegar can serve as a functional ingredient in the development of a beverage to attenuate fatigue.

본 연구에서는 잉여 농산물인 오이를 이용하여 제조한 식초음료의 항피로 효과를 검증하기 위하여 고강도 운동을 실시한 흰쥐에 오이식초음료를 매일 섭취시켜 지구력, 혈청 피로물질, 간과 근육 조직 내 글리코겐 함량, 근육 내 LDH 및 CK 등의 변화를 살펴보았다. 실험동물은 4주령의 수컷 SD계 흰쥐 15마리를 1주간 고형식이로 적응시킨 후 난괴법에 의하여 비운동군(SC), 운동군(EC), 오이식초 섭취군(CV)으로 나누었다(n=5). CV는 사람의 하루 섭취량을 기준으로 체중 kg당 7 mL씩 매일 일정시각에 경구투여 하였고 나머지 그룹은 동량의 증류수를 투여하였다. EC와 CV는 매일 일정한 시각에 트레드밀을 이용하여 분당 15 m로 20분, 분당 20 m로 30분, 분당 25 m로 60분씩 운동을 일주일에 5회 실시하였다. 식이섭취량과 식이효율에서는 그룹 간의 별다른 차이가 나타나지 않았으며 CV군의 신장 무게가 SC군보다 낮았다. 지구력 측정에서 CV가 EC보다 55.96% 더 높은 지구력을 가진 것으로 측정되었고 혈청 피로물질은 CV가 EC보다 현저히 낮은 경향을 보였다. 간과 근육의 글리코겐 함량은 CV가 다른 두 군보다 높은 수치를 나타내어 오이식초음료의 섭취에 따라 간과 근육에서의 글리코겐 재합성이 증가된 것을 확인하였으며 근조직의 LDH와 CK 측정 결과 CV와 EC를 비교하였을 때 CV에서 증가된 수치를 보였다. 이와 같이 고강도 운동으로 훈련을 실시한 흰쥐는 오이식초음료의 섭취에 의해 지구력 증진과 혈중피로물질의 감소, 간과 근육에서의 글리코겐 재합성, ATP 수치의 유지 및 젖산 대사 촉진과 같은 항피로 효과를 나타내었으므로 본 연구의 결과가 오이식초를 이용한 스포츠드링크 개발에 도움이 될 수 있을 것으로 사료된다.

Keywords

References

  1. Kim YA, Jin SW, Kim SM, Lee GH, Kim SJ, Lee WL, Na MK, Jeong HG. Anti-fatigue effect of kyung-ok-ko. Kor. J. Pharmacogn. 47: 258-263 (2016)
  2. Afari N, Buchwald D. Chronic fatigue syndrome: A review. Am. J. Psychiatry 160: 221-236 (2003) https://doi.org/10.1176/appi.ajp.160.2.221
  3. Xu C, Lv J, Lo YM, Cui SW, Hu X, Fan M. Effects of oat ${\beta}$- glucan on endurance exercise and its anti-fatigue properties in trained rats. Carbohydr. Polym. 92: 1159-1165 (2013) https://doi.org/10.1016/j.carbpol.2012.10.023
  4. Jin JK, Lee DT, Lee MC. Exercise and lactate shuttle. Heal. Sport. Med. 8: 85-92 (2006)
  5. Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A. Mitochondria and L-lactate metabolism. FEBS Lett. 582: 3569-3576 (2008) https://doi.org/10.1016/j.febslet.2008.09.042
  6. Gladden LB. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 558: 5-30 (2004) https://doi.org/10.1113/jphysiol.2003.058701
  7. Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercisedinduced metabolic acidosis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287: R502-R516 (2004) https://doi.org/10.1152/ajpregu.00114.2004
  8. Ishii H, Nishida Y. Effect of lactate accumulation during exerciseinduced muscle fatigue on the sensorimotor cortex. J. Phys. Ther. Sci. 25: 1637-1642 (2013) https://doi.org/10.1589/jpts.25.1637
  9. Cho HS. Food materials. Monwundang press, Seoul, Korea. p. 162 (1993)
  10. Kim DS, Park JH, Nam SN, Kim JH. The effect of the intake of cucumis sativus on the hormone of water control during the prolong exercise. Exer. Sci. 16: 213-222 (2007) https://doi.org/10.15857/ksep.2007.16.3.213
  11. Kumar D, Kumar S, Singh J, Narender, Rashmi, Vashistha B, Singh N. Free radical scavenging and analgesic activities of Cucumis sativus L. fruit extract. J. Young Pharm. 2: 365-368 (2010) https://doi.org/10.4103/0975-1483.71627
  12. Chung SH, Moon SH. Antimutagenic and antimicrobial effect of cucumber (Cucumin sativus) extraces. J. Korean Soc. Food Sci. Nutr. 30: 1164-1170 (2001)
  13. Shim YH, Yoo CH, Cha GH. Quality changes of oiji with various antimicrobial ingredients during fermentation. Korean J. Food Cook. Sci. 17: 329-337 (2001)
  14. Oh YA, Lee MJ, Kim SD. Changes in pectic substances during ripening of salted cucumber pickle. J. Korean Soc. Food Nutr. 19: 143-150 (1990)
  15. Jeoung YJ, Lee MH. A view and prospect of vinegar industry. Food Ind. Nutr. 5: 7-12 (2000)
  16. Setorki M. Asgary S, Eidi A, Rohani AH, Khazaei M. Acute effects of vinegar intake on some biochemical risk factors of atherosclerosis in hypercholesterolemic rabbits. Lipids Health Dis. 9: 10 (2010) https://doi.org/10.1186/1476-511X-9-10
  17. Kondo T, Kishi M, Fushimi T, Ugajin S, Kaga T. Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese japanese subjects. Biosci. Biotechnol. Biochem. 73: 1837-1843 (2009) https://doi.org/10.1271/bbb.90231
  18. Sakakibara S, Yamauchi T, Oshima Y, Tsukamoto Y, Kadowaki T. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice. Biochem. Ciophys Res. Commun. 344: 597-604 (2006) https://doi.org/10.1016/j.bbrc.2006.03.176
  19. Cho HD, Lee JH, Jeong JH, Kim JY, Yee ST, Park SK, Lee MK, Seo KI. Production of novel vinegar having antioxidant and antifatigue activities from Salicornia herbacea L. J. Sci. Food Agric. 96: 1085-1092 (2015)
  20. Kwon SH, Jeong EJ, Lee GD, Jeong YJ. Preparation method of fruit vinegars by two stage fermentation and beverages including vinegar. Food Ind. Nutr. 5: 18-24 (2000)
  21. Hong SM, Moon HS, Lee JH, Lee HI, Jeong JH, Lee MK, Seo KI. Development of functional vinegar by using cucumbers. J. Korean Soc. Food Sci. Nutr. 41: 927-935 (2012) https://doi.org/10.3746/jkfn.2012.41.7.927
  22. Kim DH, Kim KT, Lee KK. The effect of drinking the plum extract on the college soccer players' cardiovascular system and blood lactated. Korea J. Sport Sci. 24: 1381-1391 (2015)
  23. Kwon SM, Park HG, Jun JK, Lee WL. Exercise, but nor quercetin, ameliorates inflammation, mitochondrial biogenesis, and lipid metabolism in skeletal muscle after strenuous exercise by high-fat diet mice. J. Exerc. Nutr. Biochem. 18: 51-60 (2014) https://doi.org/10.5717/jenb.2014.18.1.51
  24. Wu BA, Wang RW, Nei TY. Effects of vinegar supplement on indexes of blood lactic acid, blood ammonia and blood gas during recovery of exercise fatigue. J. Wuhan. Ins. Physic. Educ. 41: 47-50 (2007)
  25. Waller AP, Geor RJ, Spriet LL, Heigenhauser GJ, Lindinger MI. Oral acetate supplementation after prolonged moderate intensity exercise enhances early muscle glycogen resynthesis in horses. Exp. Physiol. 94: 888-898 (2013)
  26. Fushimi T, Tayama K, Fukaya M, Kitakoshi K, Nakai N, Tsukamoto T, Sato Y. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. J. Nutr. 131: 1973-1977 (2001) https://doi.org/10.1093/jn/131.7.1973
  27. Adeva-Andany M, Lpez-Ojn M, Funcasta-Caldern R, Ameneiros-Rodriguex E, Donapetry-Garcia C, Vila-Altesor M, Rodrigues-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 17: 76-100 (2014) https://doi.org/10.1016/j.mito.2014.05.007
  28. Juel C, Klarskov C, Nielsen JJ, Krustrup P, Mohr M, Bangsbo J. Effect of high-intensity intermittent training on lactate and $H^+$ release from human skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 286: E245-E251 (2004) https://doi.org/10.1152/ajpendo.00303.2003
  29. Walliamann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40 (1992) https://doi.org/10.1042/bj2810021
  30. Siebert C, Kolling J, Scherer EB, Schmitz F, da Chunha MJ, Mackedanz V, de Andrade RB, Wannmacher CM, Wyse AT. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab. Brain Dis. 29: 825-835 (2014) https://doi.org/10.1007/s11011-014-9564-x
  31. Volek JS, Kraemer WJ, Bush JA, Boetes M, Incledon T, Clark KL, Lynch JM. Creatine supplementation enhances muscular performance during high-intensity resistance exercise. J. Am. Diet. Assoc. 97: 765-770 (1997) https://doi.org/10.1016/S0002-8223(97)00189-2