DOI QR코드

DOI QR Code

비파괴적인 경도 측정을 통한 저온저장 토마토(티와이250)의 감모율 예측

Prediction of weight loss of low temperature storage tomato (Tiwai 250) by non-destructive firmness measurement

  • 최금실 (서울대학교 바이오시스템공학과) ;
  • 유아름 (서울대학교 바이오시스템공학과) ;
  • 양명균 (서울대학교 바이오시스템공학과) ;
  • 조성인 (서울대학교 바이오시스템공학과)
  • Cui, Jinshi (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Yoo, Areum (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Yang, Myongkyoon (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Cho, Seong In (Department of Biosystems and Biomaterials Science and Engineering, Seoul National University)
  • 투고 : 2017.01.03
  • 심사 : 2017.03.15
  • 발행 : 2017.04.30

초록

본 연구에서는 토마토를 일정한 기간(15일) 동안 저장하여 토마토의 품질인자인 감모율, 색상과 경도를 분석하고 비 파괴적 방법으로 토마토 경도를 측정한 결과로 경도와 감모율 사이의 상관관계를 분석하고 선형회귀모델을 도출하여 토마토 품질을 예측하고자 하였다. 그린하우스에서 재배된 '티와이250'품종을 수확한 후 일반 과실 종이 박스에 포장한 후 설정환경이 $10^{\circ}C$, 90%RH인 항온항습챔버에 저장하여 3일 간격으로 경도, 무게와 색상 변화를 조사하였다. 15일간 저장 중 감모율은 저장기간이 증가함에 따라 증가하나 1.1% 정도에 머물러 단순히 감모율 인자로만 판단했을 때 토마토의 신선도 품질에 영향 끼치는 수준은 아니다. 색상변화 중 명도와 색조 각은 저장기간의 증가에 따라 감소하는 경향을, a/b와 ${\Delta}E$는 증가하는 경향을 나타냈었고 일원분산분석결과를 볼 때 유의한 수준이었다(p<0.001). 경도는 저장기간이 증가함에 따라 감소하는 경향을 나타냈으며 저장 15일차에는 경도감소율이 40% 이상인 것으로 나타났다. 그리고 비 파괴방법으로 측정한 경도 값과 감모율 사이의 상관관계를 분석하여 선형회귀모델 $WL=-0.0241{\times}F+1.5213$을 하였으며 모델의 추정치 오차는 ${\pm}0.231$이었다. 이러한 결과에 비추어볼 때 수확 후 일정한 저장환경에서 비파괴적인 경도 측정을 통해 감모율을 추정하고 신선도를 판단하는 지표고 사용하는 것이 가능한 것으로 판단되었다.

This study was conducted to investigate the weight loss, firmness, external color and vitamin C (VC) content of tomatoes (Lycopersicon esculentum) using non-destructive method to measure identical tomato samples during 15 days storage at low temperature and high humidity. Tomatoes were harvested at the light red stage, sorted, box packed and then stored in thermo-hygrostat ($10{\pm}1^{\circ}C$, $90{\pm}10%RH$). The quality changes in weight loss, firmness and external color were measured every 3 day interval. Weight loss was increased by $1.13{\pm}0.15%$, but it may not be considered to affect quality. Surface color of fruit was changed, especially in lightness and hue angle value. The color values were analyzed by analysis of variance (ANOVA), and the results were significant (p<0.001). Firmness of fruit declined during storage, but it did not decrease in direct proportion. On the storage of day 15, firmness was decreased to 40% of initial state. At last, all the experiment data are summarized and the relationship between firmness and weight loss is analyzed to construct a linear regression mathematical model that can predict the weight loss with the firmness value measured by non-destructive method. This research result could be useful in helping tomato exporters and suppliers to get real-time quality factor by using proposed method and regression model.

키워드

참고문헌

  1. Khachik F, Carvalho L, Bernstein PS, Muir GJ, Zhao DY, Katz NB (2002) Chemistry, distribution and metabolism of tomato carotenoids and their impact on human health. Exp Biol Med, 227, 845-851 https://doi.org/10.1177/153537020222701002
  2. Islam MZ, Kim YS, Kang HM (2011) Effect of breathable film for modified atmosphere packaging material on the quality and storability of tomato in long distance export condition. J Bio-Environ Control, 20, 221-226
  3. Choi JH, Jeong MC, Kim DM (2013) Changes in quality parameters of tomatoes harvested at different mature stages during storage. Korean J Food Preserv, 20, 151-157 https://doi.org/10.11002/kjfp.2013.20.2.151
  4. Choi JH, Jeong MC, Kim BS, Kim DM (2007) Effect of high $CO_2$ pre-storage treatment on the quality of tomatoes (Lycopersicon esculentum Mill.) during ripening. Korean J Food Preserv, 14, 578-583
  5. Gomez AH, He Y, Pereira AG (2006) Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J Food Eng, 77, 313-319 https://doi.org/10.1016/j.jfoodeng.2005.06.036
  6. Jha SN, Matsuoka T (2004) Non-destructive determination of acid-brix ratio of tomato juice using near infrared spectroscopy. Int J Food Sci Technol, 39, 425-430 https://doi.org/10.1111/j.1365-2621.2004.00800.x
  7. Malundo TMM, Shewfelt RL, Scott JW (1995) Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol Technol, 6, 103-110 https://doi.org/10.1016/0925-5214(94)00052-T
  8. Schuch W, Bird C (1994) Improving tomato fruit quality using bioscience. Acta Hort, 376, 75-80
  9. Tandon KS, Baldwin EA, Scott JW, Shewfelt RL (2003) Linking sensory descriptors to volatile and nonvolatile components of fresh tomato flavor. J Food Sci, 68, 2366-2371 https://doi.org/10.1111/j.1365-2621.2003.tb05774.x
  10. Thompson AK (1998) Controlled atmosphere storage of fruits and vegetables. CAB International, Willingford, UK, p 214-217
  11. Munoz-Bertomeu J, Miedes E, Lorences EP (2013) Expression of xyloglucan endotransglucosylase/hydrolase (XTH) genes and XET activity in ethylene treated apple and tomato fruits. J Plant Physiol, 170, 1194-1201 https://doi.org/10.1016/j.jplph.2013.03.015
  12. Kays SJ (1991) Postharvest physiology of perishable plant products. AVI Publishing, New York, NY, USA, p 115-117
  13. Chavez-Murillo CE, Espinose-Solis V, Apavicio-Saguilan A, Salgado-Delgado R, Tirado-Gallegos JM, Zamudio-Floves PB (2015) Use of zein and ethylcellulose as biodegradable film on evaluation of post-harvest changes in tomato (Lycopersicum esculentum). J Microbiol Biotechnol Food Sci, 4, 365-368 https://doi.org/10.15414/jmbfs.2015.4.4.365-368
  14. Vu TS, Smout C, Sila DN, LyNguyen B, Van Loey AML, Hendrickx MEG (2004) Effect of preheating on thermal degradation kinetics of carrot texture. Innov Food Sci Emerging Technol, 5, 37-44 https://doi.org/10.1016/j.ifset.2003.08.005
  15. Barnavon L, Doco T, Terrier N, Ageorges A, Romieu C, Pellerin P (2001) Involvement of pectin methylesterase during the ripening of grape berries: partial cDNA isolation, transcript expression and changes in the degree of methyl-esterification of cell wall pectins. Phytochemistry, 58, 693-701 https://doi.org/10.1016/S0031-9422(01)00274-6