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1. Preliminaries

This paper is divided into six sections. This section is devoted to stating few
results that will be used in the remainder of the paper. We also set the notations
to be used and derive few simple results that will come in handy in our treatment.
In Section 2, we charecterize numbers 5k 4+ 2, which are primes with k£ being an odd
natural number. In Section 3, we prove more general results than given in Section
2. In Section 4, we define the period of a Fibonacci sequence modulo some number
and derive many properties of this concept. In Section 5, we devote to the study of
a class of generalized Fibonacci numbers and derive some interesting results related
to them. Finally, in Section 6, we define some generalized Fibonacci polynomial
sequences and we obtain some results related to them.

We begin with the following famous results without proof except for some related
properties.

Lemma 1.1.(Euclid) If ab =0 (mod p) with a,b two integers and p a prime, then
either pla or plb.

Remark 1.2. In particular, if ged(a,b) = 1, p divides only one of the numbers a, b.

Property 1.3. Let a,b two positive integers, m,n two integers such that (|m|, |n|) =
1 and p a natural number. Then

ma =nb (mod p)
if and only if there exists ¢ € Z such that
a=nc (mod p)
and

b=mc (mod p).

Proof. Let a,b two positive integers, m,n two integers such that (|m|,|n|) =1 and
p a natural number.

If there exists an integer ¢ such that a = nc (mod p) and b = me (mod p), then
ma = mnc (mod p) and nb = mnc (mod p). So, we have ma = nb (mod p).
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Conversely, if ma = nb (mod p) with (Jm|, |n|) = 1, then from Bezout’s identity,
there exist three integers u, v, k such that

um+on =1
and
ma — nb = kp.

So, we have
ukpm + vkpn = ma — nb

and
m(a — ukp) = n(b+ vkp).

Since |m/|, |n| are relatively prime, from Lemma 1.1, it implies that there exist two
integers ¢, d such that
a — ukp = nc,

and
b+ vkp = md.

It results that mnc = mnd and so ¢ = d. Therefore, we obtain
a=nc+ukp=nc (mod p),
and

b=mc—vkp=mc (mod p). O

Remark 1.4. Using the notations given in the proof of Property 1.3, we can see
that if there exists an integer ¢ such that a = nc (mod p) and b = mc (mod p) with
(Jm[,|n]) = 1 and p a natural number, then we have

ub+va = (um+wvn)e=c (mod p)
Moreover, denoting by g the ged of a and b, if a = gn and b = gm, then ub + va =
(um +vn)g = g, then g = ¢ (mod p).

Theorem 1.5.(Fermat’s Little Theorem) If p is a prime and n € N relatively prime
to p, then nP~1 =1 (mod p).

Theorem 1.6. If 22 = 1 (mod p) with p a prime, then either x = 1 (mod p) or
x=p—1 (mod p).

Proof. If > =1 (mod p) with p a prime, then we have
22 —~1=0 (mod p)

(zr—1(zx+1)=0 (mod p)
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x—1=0 (mod p) or z+1 =0 (mod p). It is equivalent to say that z =1 (mod p)
orz=-1=p—1 (mod p). O

Definition 1.7. Let p be an odd prime and gcd(a, p) = 1. If the congruence 22 = a
(mod p) has a solution, then a is said to be a quadratic residue of p. Otherwise, a
is called a quadratic nonresidue of p.

Theorem 1.8.(Euler) Let p be an odd prime and ged(a,p) = 1. Then a is a
quadratic nonresidue of p if and only if o' = -1 (mod p).

Definition 1.9. Let p be an odd prime and let ged(a,p) = 1. The Legendre symbol

(a/p) is defined to be equal to 1 if a is a quadratic residue of p and is equal to —1
is a is a quadratic non residue of p.

Property 1.10. Let p an odd prime and a and b be integers which are relatively
prime to p. Then the Legendre symbol has the following properties:

(1) Ifa=b (mod p), then (a/p) = (b/p).
(2) (a/p) =a®=D/? (mod p)
(3) (ab/p) = (a/p)(b/p)

Remark 1.11. Taking a = b in (3) of Property 1.10, we have

(a®/p) = (a/p)* =1.

Lemma 1.12.(Gauss) Let p be an odd prime and let ged(a,p) = 1. If n denotes the
number of integers in the set S = {a, 2a,3a, ..., (”2;1) a}, whose remainders upon
division by p exceed p/2, then

(a/p) = (~1)".

Corollary 1.13. If p is an odd prime, then

1 if p=1 (mod38) or

B 7 (mod 8),
(2/79)_{ -1 4if p=3 (mod8) or 5

p=
p=5 (mod 8).
Theorem 1.14.(Gauss’ Quadratic Reciprocity Law) If p and q are distinct odd

primes, then
1 g—1

(p/a)(g/p) = (—1)"= 7.

Corollary 1.15. If p and q are distinct odd primes, then

_ (qg/p) if p=1 (mod 4) or g=1 (mod4),
=1 S0 Ll e,
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Throughout this paper, we assume k € N, unless otherwise stated.
From (1) of Property 1.10, Theorem 1.14, Corollary 1.13 and Corollary 1.15, we
deduce the following result.

Theorem 1.16. (5/5k +2) = —1.

Proof. Clearly (5/5k+2) = (5k+2/5) since 5 =1 (mod 4). Again (5k+2/5) = (2/5)
since 5k +2 =2 (mod 5). Also it is a well known fact that (2/5) = —1 since 5 =5
(mod 8). O

For proofs of the above theorems the reader is suggested to see [2] or [6].
Let p a prime number such that p = 5k + 2 with & an odd positive integer.
From Property 1.10 and Theorem 1.16 we have

(5“%)2 —1 (mod 5k +2).

From Theorem 1.6, we have either

S5k+4+1
2

5 = -1 (mod 5k +2)

or
5k+1

572 =5k+1 (mod 5k + 2).

Moreover, we can observe that

52k+1)=1 (mod 5k +2).

5k+1

Theorem 1.17. 5 2 =5k + 1 (mod 5k + 2) where 5k + 2 is a prime.

The proof of Theorem 1.17 follows very easily from Theorems 1.8, 1.16 and
Property 1.10.

Theorem 1.18. Let r be an integer in the set {1,2,3,4}. Then, we have

- 1 if r=1 or r=4
(5/5k+'r){_1 if r=2 or r=3.

Proof. We have (5/5k + 1) = (5k + r/5) since 5 =1 (mod 4).
Moreover, (5k +r/5) = (r/5) since 5k +r =r (mod 5).
Or, we have
If r = 1, then using Theorem 1.14, (r/5) = 1.
If r = 2, then using Corollary 1.13, (r/5) = —1.
If r = 3, then using Theorem 1.14, (r/5) = —1.
If r = 4, then since (4/5) = (22/5) = 1 (see also Remark 1.11), (r/5) =1. O

Theorem 1.19. Let r be an integer in the set {1,2,3,4}. Then, if 5k +r is a
prime, we have

s 1 (modbk+7r) if r=1 or r=4,
-1 (mod 5k +7r) if r=2 or r=3.
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The proof of Theorem 1.19 follows very easily from Theorems 1.8, 1.18 and
Property 1.10.

We fix the notation [[1,n]] = {1,2,...,n} throughout the rest of the paper. We
now have the following properties.

Remark 1.20. Let 5k + 7 with 7 € [[1,4]] be a prime number. Then

b= 0 (mod?2) if r=1 or r=3,
11 (mod2) if r=2 or r=4,

or equivalently
k=r+1 (mod?2).

S5k +1

Property 1.21. <2l 1

) =5k + 1 (mod 5k + 2), with | € [[0, [%£]]] and 5k + 2
1S a prime.

Proof. Notice that for [ = 0 the property is obviously true. We also have

Sk+1\ _ (5k+1)5k(5k —1)...(5k — 20 + 1)
<2l+1) (20 +1)!

Or,
5k = -2 (mod 5k + 2),
5k —1= -3 (mod 5k + 2),
5k —2l+1=—(21+1) (mod 5k +2).

Multiplying these congruences we get

5k(5k —1)...(5k—20+1) = (2l +1)! (mod 5k + 2).

Therefore "
1
@+ (T 2 GE D@+ 1) (mod 5k +2).
20+1
Since (21 4 1)! and 5k + 2 are relatively prime, we obtain
5k +1
= 1 2). o
(2l+1) 5k+1 (mod 5k+2)

We have now the following generalization.

Sk -1
Property 1.22. ( 2—;—11 = —1 (mod 5k +r), with I € [[0,*=2]]] and

5k + 1 is a prime such that r € [[1,4]] and k =7+ 1 (mod 2).
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The proof of Property 1.22 is very similar to the proof of Property 1.21.

5k

20+1
and 5k + 2 is a prime.

Property 1.23. ( ) =5k — 2l = —2(1+1) (mod 5k + 2) with | € [[0, 3£ ]]]

Proof. Notice that for [ = 0 the property is obviously true. We have

5k \  5k(5k—1)...(5k — 20+ 1)(5k — 21)
(21 + 1) B (20 +1)! '

5k = -2 (mod 5k + 2),
5k —1=-3 (mod 5k + 2),

5k—2l+1=—(20+1) (mod 5k+2).

Multiplying these congruences we get
5k(5k—1)...(bk—20+1)=(21+1)! (mod 5k +2).

Therfore

(20 + 1)! <215f 1) = (20 + 1)!(5k — 21) (mod 5k + 2).

Since (20 + 1)! and 5k + 2 are relatively prime, we obtain

S5k +1
20+1

>:5k—2l:5k+2—2—2l:—2(l+1) (mod 5k +2). O
We can generalize the above as follows.

k -2 r
5 ;lr—:l ) = —-2(l+1) (mod 5k + ), with I € [[0, Lak+72rf3”]

and 5k + r is a prime such that r € [[1,4]] and k =r + 1 (mod 2)

Property 1.24. <

The proof of Property 1.24 is very similar to the proof of Property 1.23.

In the memainder of this section we derive or state a few results involving
the Fibonacci numbers. The Fibonacci sequence (F,) is defined by Fy = 0, F} =
I,Fn+2 = Fn + Fn+1 for n Z 0.

From the definition of the Fibonacci sequences we can establish the formula for
the nth Fibonacci number,

1+v5
2

where ¢ = is the golden ratio.
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From binomial theorem, we have for a # 0 and n € N,

—1
an

(@b —(@-b" = (Darssta— =230 ()" Jareenies
=0

k=0
L2z n b\ 21
1.1 )" —(a—b)"=2a" - .
(1) @ =230, ) (7)
We set v
— o 14+VB
a+b=p= E\}E
a—b=1-p=>.
So
1 20—-1 /5
a=—, b= —_—.
2 2 2
Thus
- =5
a

We get, from (1.1),

Thus we have

2n—1 21+1

L5+
1
Theorem 1.25. F,, = Z ( " )51.
1=0

k
Property 1.26. Fjo =1+ ZFi‘

=1
Theorem 1.27. Fyy; = FiFy11+ Fi_1F, withkeN andl > 2.
The proofs of the above two results can be found in [6].

Property 1.28. Let m be a positive integer which is greater than 2. Then, we have
Fymio = 4F3m—1 + F3m-a.

The above can be generalized to the following.

Property 1.29. Let m be a positive integer which is greater than 2. Then, we have

F3p42 = 4ZF31'—1-

1=2



Some Properties of Fibonacci Numbers

The above three results can be proved in a straighforward way using the recur-
rence relation of Fibonacci numbers.
We now state below a few congruence satisfied by the Fibonacci numbers.

Property 1.30. F,, =0 (mod 2) if and only if n =0 (mod 3).

Corollary 1.31. If p = 5k + 2 is a prime which is strictly greater than 5 (k € N
and k odd), then F, = F5p4o is an odd number.

In order to prove this assertion, it suffices to remark that p is not divisible by
3.

Property 1.32. F5;, =0 (mod 5) with k € N.
Property 1.33. F,, > n withn € N and n > 5.

The proofs of the above results follows from the principle of mathematical in-
duction and Theorem 1.27 and Proposition 1.26. For brevity, we omit them here.

2. Congruences of Fibonacci Numbers Modulo a Prime

In this section, we give some new congruence relations involving Fibonacci num-
bers modulo a prime. The study in this section and some parts of the subsequent
sections are motivated by some similar results obtained by Bicknell-Johnson in [1]
and by Hoggatt and Bicknell-Johnson in [5].

Let p = 5k + 2 be a prime number with k& a non-zero positive integer which is
odd. Notice that in this case, 5k £ 1 is an even number and so

Sk+1| 5Sk+1
2 2

We now have the following properties.

Property 2.1. F5;io =5k + 1 (mod 5k + 2) with k € N and k odd such that 5k+2
18 prime.

This result is also stated in [5], but we give a different proof of the result below.

Proof. From Theorems 1.17 and 1.25, we have

5k+1

>[5k +2
PRy o = Z( N )5lz "% =5k+1 (mod 5k +2)

where we used the fact that (52’?1'12) is divisible by 5k + 2 for [ = 0,1, ..., %

From Fermat’s Little Theorem, we have

25FF1 =1 (mod 5k + 2).
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We get Fsrio =5k + 1 (mod 5k + 2). O

Property 2.2. F5;41 =1 (mod 5k + 2) with k € N and k odd such that 5k + 2 is
prime.

Proof. From Theorem 1.25 and Property 1.21, we have
skt 1
5k _ 1 _ 1
2K Pl = l; <2z N 1)5 =(5k+1)» 5 (mod 5k +2).

We have

We get from the above
9k 2E = (5k + 1) {5L%J+1 - 1} (mod 5k + 2).

Since k is an odd positive integer, there exists a positive integer m such that k£ =
2m + 1. It follows that

5k

— | =5 2.

{ 5 J m+

Notice that 5k + 2 = 10m + 7 is prime, implies that &k # 5 and k£ # 11 or
equivalently m # 2 and m # 5. Other restrictions on k and m can be given.
From Theorem 1.17 we have

573 = 10m +6  (mod 10m + 7).

. 8k L5E)+1
We can rewrite ZLZ%J 5l=22_=las
=
+3 _
> =
4

=0

Moreover, we have (5k + 1) {5L57kj+1 - 1} = (10m +6) {5°™ 3 —1}.
Or,

(10m+6) {5513 — 1} = 5743 {5543 _ 1} = 519746 _10m —6  (mod 10m+7).

We have
(10m +6) {5°"° -1} =5 11 (mod 10m + 7).

From Fermat’s Little Theorem, we have 51976 = 1 (mod 10m + 7). Therefore

(10m+6) {5°"* -1} =2 (mod 10m +7),
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or equivalently
(5k + 1) {5%“1 - 1} — 2 (mod 5k + 2).

It follows that
258 2F 1 =2 (mod 5k + 2).

Since 2 and 5k + 2 are relatively prime, so
2%kt 1 =1 (mod 5k + 2).
From Fermat’s Little Theorem, we have 2°**! =1 (mod 5k + 2). Therefore
Fsiy1 =1 (mod 5k + 2). O

Property 2.3. F5, =5k (mod 5k + 2) with k € N and k odd such that 5k + 2 is
prime.
Proof. From Theorem 1.25 and Property 1.23 we have

S5k—1 S5k—1

2 5k' 2
ofk—1p I — —2)5! 2).
bk ; <2z N 1)5 2 (5k —20)5'  (mod 5k + 2)

Also

5k—1 { 5k—1

: 5(3x 5% — (2k+1)

> (5k —20)5 = < :

=0

where we have used the fact that for z # 1 and n € N we have

zn:l , (n+D(x -1zt —ant2 g
z = .
P (x —1)2

So

5k—1

95h+2p =5 (3 x 525 (2K + 1)) (mod 5k + 2).

Moreover since k = 2m + 1, we have

5k—1

3x5 7 —(2k+1)=3x5""2_ (4m +3).

Since 5°™3 = 10m + 6 (mod 10m + 7), we have
3 x 573 = 30m + 18 = 40m + 25 (mod 10m + 7).

Consequently
3x 52 =8m+5 (mod 10m +7),

which implies

3 % 5FMA2 _ (4m+3)=4m+2 (mod 10m +7),

11
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or equivalently for £ =2m + 1

S5k—1

3x57 2 —(2k+1)=2k (mod 5k + 2),

25kH2F =2 x 5k (mod 5k + 2).
Since 2 and 5k + 2 are relatively prime, so
25 =5k (mod 5k + 2).
From Fermat’s Little Theorem, we have 2°%*1 = 1 (mod 5k + 2). Therefore
F5, =5k (mod b5k + 2). O

Property 2.4. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1
F3,=2 <3m—1 + ng_l_ing1> (mod 5k + 2)
i=1

Proof. We prove the result by induction. We know that Fs = 8. Or, 2(3+ Fy) =
2(34+1)=2x4=8. So
FG :ngg :2(3+F2) 52(3+F2) (IIlOd 5k+2)

m—1
Let us assume that I3, = 2 <3m1 + ZSmliF3i1> (mod 5k+2) with m > 2.
i=1
For m a positive integer, we have, by Theorem 1.27,
F3(m+1) = Fam43 = F3F3mi1 + Fols = 2F5m 41 + F3
= 2(F3m + F3m—1) + P = 2F3 1 + 3F3m.

From the assumption above, we get

m—1

F3(m+1) =2F3,,_1+2 <3m + Z3m—zF311> (mod 5k + 2)

=1

=2 <3m + Z:&ming_l) (mod 5k + 2).

i=1

Thus the proof is complete by induction. O

Theorem 2.5. Let 5k + 2 be a prime with k an odd integer and let m be a positive
integer which is greater than 2. Then

m—1

Fypk = 5k (3’”1 + 23’"“&-_1) (mod 5k + 2)

i=1
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and
F5mk+1 = F3m—1 (mod 5k + 2)

Proof. We prove the theorem by induction. We have, using Theorem 1.27
Fior = Fspysk = FspFspr1 + Fsp—1Fs = Fsp(Fspy1 + Fsp—1)-
Using Properties 2.1, 2.2 and 2.3, we can see that
Fior, =20k (mod 5k + 2).
Also

1
5k <3 + 231—1‘173”) =5k(3 + Fy) = 20k = 20k  (mod 5k + 2).
i=1

1
Fior = Fsxor = 5k <3 + Z:sliFgH) (mod 5k + 2).
i=1

Moreover, we have from Theorem 1.27, Property 2.2 and Property 2.3,
Fiopt1 = Frprsirr = Foq + Fo, = 14+ 25k (mod 5k + 2).
We have
(5k +2)% = 25k% 4+ 20k +4 = 25k + 10k =0 (mod 5k + 2).

So
25k? = —10k = 2(5k +2) — 10k =4 (mod 5k + 2).

Therefore
Fiop+1 = F5 =5 (mod 5k + 2),

or equivalently
Fsxops1 = F3xo-1 =5 (mod 5k +2).

Let us assume that

m—1

Fsmi = 5k <3m_1 + Z3m_1_iF3i1> (mod 5k + 2)
i=1

and
Fspkt1 = Fsm—1  (mod 5k + 2).

Then, we have

Fstminyk = Fsmk+sk = FspFsmi1 + Fsp—1Fsmk-

13
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Using Property 2.3 and Fs;_1 = 3 (mod 5k + 2), from the assumptions above,
we have

m—1

Fs(m+1)k = 5kF3m_1 + 3 x 5k <3m1 + Za’"“ng_1> (mod 5k + 2).

i=1

It gives

F5(m+1)k = 5k <3m + ZSm_iF{gil) (mod 5k + 2)
i=1
Moreover, we have

Fstmanyks1 = Fsmiask+1 = Fsrp1 Fsmpr1 + Fsp Fsme-

Using Properties 2.2 and 2.3 and the assumptions above, and since 25k% = 4
(mod 5k 4 2), we have

m—1

Fsminykst = Fam_1 + 25k° <3m—1 + Z3m—i—1F3“> (mod 5k + 2)
i=1
m—1

= Fyp1 +4 <3m—1 + ng—i—ngi_1> (mod 5k + 2)
i=1

= Fs;n—1 + 2F5,, (mod 5k + 2).

Or,
Fp1 +2F3,, = Fsp—1 + Fsp, + Fayy = Fap1 + F3py = Fgo.
Therefore
Fs(mt1)k+1 = F3my2  (mod 5k +2),
or equivalently
Fstmt1)k+1 = F3(m+1)—1  (mod 5k + 2).
This completes the proof. O

Corollary 2.6. Let 5k + 2 be a prime with k an odd integer and m be a positive
integer which is greater than 2. Then

m—1

F5mk+2 = F3m—1 + 5k <3m1 + Z3m1ing_1> (HlOd 5k + 2),

=1

m—1

Fsimk+3 = 2F3,-1 + 5k <3m_1 + Z3m_1_iF3i—1> (mod 5k +2),
i=1
and
m—1

F5mk+4 = 3F3m—1 + 10k <3m1 + ngling_1> (HlOd 5k + 2)

i=1
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Theorem 2.7. Let 5k+2 be a prime with k an odd positive integer, m be a positive
integer which is greater than 2 and r € N. Then

m—1

Frusktr) = Frnp Fam—1 + 5k Epr 1 (3’"1 + Z:ﬁmliFg“) (mod 5k + 2).
i=1

Proof. For m,r two non-zero positive integers, we have by Theorem 1.27
Fm(5k+r) = F5mk+m'r = Fm7'F5mk+1 + For—1Fsme-

From Theorem 2.5, we have for m > 2 and r € N

m—1

Fm(5k+'r‘) = ForF3m_1+5kF 1 <3m—1 + Z?)m_l_ingl) (mod 5k + 2).
i=1

This completes the proof. O

Remark 2.8. In particular, if » = 3, we know that
Frk+s) =0 (mod 5k + 2).

This congruence can be deduced from Property 2.4 and Theorem 2.7. Indeed, using
Theorem 2.7, we have

m—1

Fr5k43) = F3smF3m—1 + 5k F3m 1 <3m_1 + Z3T’L_1_iF3i1> (mod 5k + 2)
i=1

m—1
= F3n Fam—1 + 5k F3m 1 <3m1 + Z3m1iF3i—1>
i=1

m—1

— (5k 4+ 2) Fs 1 (3’"—1 +) 3’”_1‘iF3i1) (mod 5k + 2)
i=1
m—1

= F3mF37n—1 — 2F3m_1 <3m1 + Z-?)mling_l) (HlOd 5k + 2)

i=1
Using Property 2.4, we get
Fm(5k+3) = FBmF3m—1 - FSm—lFBm =0 (mOd 5k + 2)

Corollary 2.9. Let 5k + 2 be a prime with k an odd positive integer and m,r € N.
Then
Fm(5k+r) = FmTF3m71 - FmTleSm (mOd ok + 2)
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Lemma 2.10. Let 5k + 2 be a prime with k an odd positive integer and r € N.
Then
Fsprr = Fr —2F._1  (mod 5k + 2).
Proof. We prove this lemma by induction. For » = 1, we have Fsiq, = Fspp1 =1
(mod 5k 4+ 2) and F,. — 2F,_1 = F; — 2Fy = F; =1 (mod 5k + 2).
Let us assume that Fspqs = Fs —2Fs_1 (mod 5k + 2) for s € [[2,7]] with r > 2.
Using the assumption, we have for r > 2

Fsjyre1 = Fspyr + Fpqr—1 (mod 5k 4 2)
=F.—2F._1+F._1 —2F,_o (mod 5k +2)
=F +F_1—2(F_1+F,_3) (mod5k+2)
= Fr11 — 2F, (mod 5k + 2).

Thus the lemma is proved. O

We can prove Lemma 2.10 as a consequence of Corollary 2.9 by taking m = 1.
Corollary 2.11. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r € N. Then

Fm(5k+r) = FmrF3m+1 - FmrJrlFSm (mOd 5k + 2)

The above corollary can be deduced from Corollary 2.9.

Lemma 2.12. Let 5k + 2 be a prime with k an odd positive integer and let m be a
positive integer. Then

Fsmp + F3n =0 (mod 5k 4 2).

Proof. For m = 0, we have Fs, + F3;m = 2Fp = 0= 0 (mod 5k + 2). For m = 1,
we have Fs,; + F3, = Fs+F3 =5k+2 =0 (mod 5k+2). So, it remains to prove
that for m > 2, we have Fsni + F3, =0 (mod 5k + 2).

From Theorem 2.5, we have

m—1

F5mk = 5k <3m—1 + Z?)m_l_iF;gil) (HlOd 5k + 2)
i=1

m—1
=5k <3m1 + ZSmliF&'—l)
=1
m—1 )
— (5k +2) (3’"—1 +) 3’”‘1‘1F3i1> (mod 5k + 2)
=1

m—1
—2 <3m1 + Z3m”F3,-_1> (mod 5k + 2).

i=1
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From Property 2.4, we have Fy,,x = —F3,, (mod 5k + 2). O
We can prove Corollary 2.11 as a consequence of Lemma 2.12.

Remark 2.13. We can observe that

F1><(5k+r) = F5k+r

and
FiyrF3xi41 — Fixeg1F3x1 = FpFy — Frp1 F3 = 3F, — 2F .

By Properties 2.1, 2.2 and 2.3, we have
r=1: F5k+r:F5k+1El (mOd 5]€+2)

3F, —2F, 1 =3F, —2F, =1=1 (mod 5k + 2)
r=2: Fyppr = Fappo =5k +1 (mod 5k + 2)
3F, —2F,,, =3F, —2F; = —1=5k+1 (mod 5k + 2)
r=3: Fspyr = F5p43 =0 (mod 5k + 2)
3F, —2F,,, =3F; —2F,=0=0 (mod 5k +2)
r=4: Fsgyr = F5p04 =5k +1 (mod 5k + 2)
3F, — 2F,,, =3F, —2F; = —1=5k+1 (mod 5k + 2)

So, we have
Fsiyr =3F, —2F. 4 (mod 5k + 2)

or equivalently
Fixktr) = FixrF3x141 — Fixr41F3x1 (mod 5k + 2)
with r € [[1,4]].
Thus we have the following.

Property 2.14. Let 5k + 2 be a prime with k an odd positive integer, let m be a
positive integer and r € N. Then

Fsptr = 3F, —2F,11  (mod 5k + 2).

Proof. We have
F5k+0 = .F5]€ = bk (mod 5k + 2)

and
3F0—2F1=—2£5k‘ (mod 5k+2)

So, Fs; = 3Fy — 2F; (mod 5k + 2).

17
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Moreover, we know that
Fsrp1 =3F —2F; =1 (mod 5k + 2).
Let us assume that
Fsprs =3F, —2Fs11  (mod 5k + 2)
for s € [[1,r]]. We have for r € N,

Fspvry1 = Fsiqr + Fsprr—1 = 3F, — 2F,.11 + 3F,_1 — 2F, (mod 5k + 2)
=3(F + Froq) = 2(Frp + Fr)  (mod 5k +2)
=3F,41 — 2F,42 (mod 5k + 2).

Thus the proof is complete by induction. O
Property 2.15. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1
Fypyr =3™+2> 3™ '"'Fy; (mod 5k +2).
i=1

Proof. We prove the result by induction. We have for m = 2, F3,,11 = F3xo41 =

m—1
Fr =13 and 3™ +2) 3™ 17Fy,; =324 2F; = 9+2x2=9+4 =13 So,
i=1
F; =32+ 2F3 = 13 (mod 5k + 2).
Let us assume that for m > 2 the result holds. Using this assumption, we have
for m > 2

F3(miy41 = Fsmia = FuF3mi1 + F3F3 = 3F3m41 + 2F3,,
m—1
=3 423 3" Fy; 4 2F3,  (mod 5k + 2)

i=1
=3t 4+23 3" Fy;  (mod 5k + 2).
i=1
Thus the induction hypothesis holds. O

Corollary 2.16. Let 5k + 2 be a prime with k odd and let m be a positive integer
which is greater than 2. Then, we have

m—1
Fapmyo =3m+2 <3m1 + 23’””}«“&«“) (mod 5k + 2).
i=1
Proof. It stems from the recurrence relation of the Fibonacci sequence which im-

plies that F3y,+9 = F3p + F3my1 and Fspy1 = F3; + Fsi—1 and Property 2.4 and
Property 2.15. O
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3. Some Further Congruences of Fibonacci Numbers Modulo a Prime

In this section we state and prove some more results of the type that were
proved in the previous section. These results generalizes some of the results in the
previous section and in [1] and [5].

Let p = 5k + r with r € [[1,4]] be a prime number with k a non-zero positive
integer such that kK =r +1 (mod 2). Notice that 5k +r £ 1 is an even number and
SO

S5k+r=+1 B 5k+r+1
2 B 2 '

We have the following properties.
Property 3.1. We have

P _ gl 1 (modbk+r) if r=1 or r=4,
Sk = | -1 (modbk+r) if r=2 or r=3,
withr € [[1,4]] k € N and k =7+ 1 (mod 2) such that 5k + r is prime.
This result is also stated in [5], here we give a different proof below.
Proof. From Theorems 1.17 and 1.25 we have

S5k+r—1

2T Py = i SkFTY o _ gkt (mod 5k + 1)
S5k+r — a; 2 +1 = )

where we used the fact that (52];1'{) is divisible by 5k +r for = 0,1, ..., 5’”‘7;_3

From Theorem 1.5, we have

25471 =1 (mod 5k + 7).

S5k+r—1

We get Fsiqr =5 2 (mod 5k + r). The rest of the theorem stems from
Theorem 1.19. O

Corollary 3.2. Let p be a prime number which is not equal to 5. Then, we have

1 (modb5) or p=4 (mod?5),
2 (mod5) or p=3 (mod5).

F{ 1 (mod p) if p
P=1lp-1 (modp) if p

Proof. We can notice that F5, =1 =1 (mod 2) and 2 =2 (mod 5). Moreover, we
can notice that F3 = 2 =2 (mod 3) and 3 = 3 (mod 5). So, Corollary 3.2 is true
for p =2,3.

We can observe that the result of Corollary 3.2 doesn’t work for p = 5 since

F; =5=0 (mod 5).

The Euclid division of a prime number p > 5 by 5 allows to write p like 5k + r
with 0 <r < 5and k =r+1 (mod 2). Then, applying Property 3.1, we verify that
the result of Corollary 3.2 is also true for p > 5.
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It completes the proof of this corollary. O
Property 3.3. We have
Fopir i = { 0 (mod 5k + 1) zf r=1 or r=4,
1 (modbk+r) if r=2 or r=3
withr € [[1,4]) k € N and k =7+ 1 (mod 2) such that 5k + r is prime.

Some parts of this result is stated in [1] in a different form. We give an alternate
proof of the result below.

Proof. From Theorem 1.25 and Property 1.22 we have

L5k+27‘72 L5k+2r72j
k+r—1
2K P =4 ) (5 ;lr:; ) >5l =4(5k+r—1) Y 5' (mod 5k+r).
=0 =0

It comes that
Ok B = (k47— 1) (5LWH1 - 1) (mod 5k + 7).
From Theorem 1.5, we have
25K+ =2 (mod 5k + 7).

So, since 5k +r — 1 is even and since 2 and 5k + r are relatively prime when 5k + r
prime, we obtain

bk+r—1

Fsppr—1 = 5

<5L75k+2rfzj+1 - 1) (mod 5k + ).

Since 5k 4+ r — 1 is even and so 5]“*;’1 is an integer, we can notice that

5k +1r—2 5b+7r—1 1 5k+r—1 1
_— | +l=— | 4+l=—4+ | —= | +1

2 2 2 2 2
Sk+r—1 1| Bk4+r—1 |1| Bk+r—1
St LI O (e I el L

2 “ﬂ 2J 2 +{2J 2

where we used the property that |n+ x| =n+ |z] for all n € N and for all z € R.
It follows that

S5k+r—1 7/ sktr—1
(3.1) Fsppro1 = —F7— (5

5 2 — 1) (mod 5k + r).

The case = 2 was done above. We found (see Property 2.2) and we can verify
from the congruence above that

Fsr41 =1 (mod 5k + 2).
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S5k+r—1 5k
2

From Theorem 1.19, if r = 1, we have 5= 2~ =52 =1 (mod 5k + 1). So, using
(3.1), we deduce that
F5;, =0 (mod 5k +1).

From Theorem 1.19, if » = 3, we have 53H= = 5%

So, using (3.1), we deduce that

—1=5k+2 (mod 5k+3).

Fsrio=—0Bk+2)=1 (mod 5k + 3).

S5k4+r—1 5k+3

From Theorem 1.19, if r =4, we have 5~z =572 =1 (mod 5k+4). So, using
(3.1), we deduce that

Fsky3 =0 (mod 5k + 4). O

The following two results are easy consequences of Properties 3.1 and 3.3.

Property 3.4. We have

2 _ 1 (modbk+r) if r=1 or r=4,
PRAT=2= 1 _2 (mod 5k +7) if r=2 or r=S3,
withr € [[1,4]] k € N and k =7+ 1 (mod 2) such that 5k + r is prime.
Property 3.5. We have

7 _J 1 (modbk+r) if r=1 or r=4,
SRETHL =0 (mod 5k +7) if r=2 or r=3,
withr € [[1,4]] k € N and k =7+ 1 (mod 2) such that 5k + r is prime.
The following is a consequence of Properties 3.1 and 3.5.

Property 3.6. We have

I _J 2 (mod5k+r) if r=1 or r=4,
SRArT2 =1 —1 (mod 5k+71) if r=2 or r=a3,
withr € [[1,4]) ke N and k =7+ 1 (mod 2) such that 5k + r is prime.

Some of the stated properties above are given in [1] and [5] also, but the methods
used here are different.

4. Periods of the Fibonacci Sequence Modulo a Positive Integer
Notice that F; = F» =1 (mod m) with m an integer which is greater than 2.

Definition 4.1. The Fibonacci sequence (F},) is periodic modulo a positive integer
m which is greater than 2 (m > 2), if there exists at least a non-zero integer ¢,
such that

Fite, = Foyp, =1 (mod m).



22 A. Laugier and M. P. Saikia

The number ¢, is called a period of the Fibonacci sequence (F,,) modulo m.

Remark 4.2. For m > 2 we have [,,, > 2. Indeed, ¢, cannot be equal to 1 since
F3=2.

From Theorem 1.27 we have

F2+gm = Fngg, + Fgm_lFQ =2F, + Ffm—l (mod m)

Since Fy,, + Fy,,—1 = Fi1¢,,, we get

F2+gm =2F, +F, 1=F

m m m

+ Fiye, =F,

+ Fare,  (modm).

m m

Therefore we have the following.
Property 4.3. F;, =0 (mod m).

Moreover, from Theorem 1.27 we have
Fiyo, =Fp, Fo+F, 1 FW=F,, +F,, _1=F, _1 (mod m)
Since F14¢,, =1 (mod m), we obtain the following.
Property 4.4. F;, _1 =1 (mod m).

Besides, using the recurrence relation of the Fibonacci sequence, from Property
4.3 we get
Fy, o+ Fy, 1=F, =0 (modm).

Using Property 4.4, we obtain
Property 4.5. F;, o =m—1 (mod m).
Remark 4.6. From Theorem 1.27 we have for m > 2
F2m — LI'm+m :FmFm+1 +Fm71Fm :Fm(Fm+1+Fm71)7

and

Fomit1 = Fni1yem = FnFrgo + Fopm1 P
=Fn(Fom + Fing1) + Frne1 (Fe1 + Fi)
= Fn(2Fn 4+ Fm1) + Fre1(Fp—1 + Fi)
=2F2 +2F, Fp 1+ F3_ =F2+F2,,.

From this we get
Fomy2 = Foyi1 + Fopy = F2 + F2 o + Fp(Frng1 + Frne1),

Fomys = F3Fomy1 + FoFom = 2(F2 + F2 1) + E(Fog1 + Frno1),



Some Properties of Fibonacci Numbers 23

and
Fomia = Fopis + Fomyo = 3(Fo + F2 ) 4+ 250 (Frp1 + Frno1).

Theorem 4.7. A period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime and k odd is given by

Uspio = 2(5k + 3).

Proof. Using the recurrence relation of the Fibonacci sequence, and from Properties
2.1, 2.2 and 2.3, we have

Fsiv3 = Fspyo + Fs01 =5k +2=0 (mod 5k + 2)
Taking m = 5k + 2 prime (k odd) in the formulas of Fs,,13 and Fy,, 14, we have

Fiopsr = 2(Fu o + Fois) + Foppo(Fsigs + Frign)
=2(5k+1)2 +5k+1 (mod 5k + 2)
= 50k% + 20k + 2 + 5k + 1 = 10k(5k + 2) + (5k +2) + 1 (mod 5k + 2)
=1+ (10k+1)(5k+2) =1 (mod 5k + 2),

and
Fiopss = 3(Flupo + Fois) + 2F5ki0(Fspgs + Fopy1)
=3(5k+1)2+2(5k+1) (mod 5k + 2)
= 75k? + 30k + 3 + 10k +2 (mod 5k + 2)
= 15k(5k +2) + 2(5k +2) + 1 (mod 5k + 2)
=1+ (15k+2)(5k+2) =1 (mod 5k + 2).
Thus

Fiopq7 = Frorys =1 (mod 5k + 2),

or equivalently
Fiioeris) = Faposirs) =1 (mod 5k + 2).

We deduce that a period of the Fibonacci sequence modulo 5k + 2 with 5k + 2 a
prime is {5510 = 2(5k + 3). |
We can generalize the above result as follows.

Theorem 4.8. A period of the Fibonacci sequence modulo 5k + r with 5k +r a
prime such that r = 2,3 and k =r 4+ 1 (mod 2) is given by

£5k+r = 2(5k +7r+ 1)

Proof. Using the formula for F5,, given in Remark 4.6, taking m = 5k +r + 1, we
have

Fyisitr+1) = Fsktri1 (Fskgr + Fspgri2)-
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From Properties 3.1, 3.5 and 3.6, we obtain

I _ [ 3 (modbk+r) if r=1 or r=4,
20k+r+D) =1 0 (mod 5k +7) if r=2 or r=23.

Using the formula for Fb,,;1 given in Remark 4.6, taking m = 5k + r + 1, we have

2 2
Foisktr+1)+1 = Fopppqpr + Fopryo-
From Properties 3.1 and 3.5, we obtain

F _ [ 5 (modbk+r) if r=1 or r=4,
25k+r+1)+1 = (mod 5k +r) if r=2 or r=3.

Using the recurrence relation of the Fibonacci sequence, we have Fo(5iqpq1)42 =
Fyisktri1) + Foasrars1)+1- So

P _ [ 8 (modbk+r) if r=1 or r=4,
20k+r+)+2 =1 1 (mod 5k+r) if r=2 or r=23.

Therefore, when 5k + r is prime such that r = 2,3 and k =r+1 (mod 2), we have
Fyshiri1y =0 (mod 5k + 1) and Fyspiri1)+1 = Faiskprii)s2 = 1 (mod 5k + 7).
It results that if 5k + r is prime such that » = 2,3 and £ = r + 1 (mod 2), then
2(5k +r +1) is a period of the Fibonacci sequence modulo 5k + 7. O

Theorem 4.9. A period of the Fibonacci sequence modulo 5k + r with 5k +r a
prime such that r = 1,4 and k =r 4+ 1 (mod 2) is given by

Uiy = 2(5k + 1 — 1).

Proof. Using the formula for Fb,, given in Remark 4.6, taking m = 5k +r — 1, we
have

Fyiskqr—1) = Fsptr—1(Fsryr + Fspgr—2)-

From Properties 3.1, 3.3 and 3.4, we obtain

. _ [ 0 (modbk+r) if r=1 or r=4,
25k+r—1) =\ _3 (mod 5k +7r) if r=2 or r=3.

Using the formula for F5,, 11 given in Remark 4.6, taking m = 5k + r — 1, we have

_ 2 2
Foskrr—1)+1 = Foppr1 + Foppr

From Properties 3.1 and 3.3, we obtain

. _ [ 1 (modbk+7) if r=1 or r=4,
20ktr=D+1 = 9 (mod 5k +7) if r=2 or r=S3.
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Using the recurrence relation of the Fibonacci sequence, we have Fy5p4r—1)42 =
Faskar—1) + Foskqr—1)41- SO

P _ 1 (modbk+r) if r=1 or r=4,
20ktr=D42 = 1 (mod 5k +7) if r=2 or r=3.

Therefore, when 5k + 7 is prime such that r = 1,4 and k =r 4+ 1 (mod 2), we have
F2(5k+7‘—1) =0 (HlOd 5k + ’I") and F2(5k+7‘—1)+1 = F2(5k+7‘—1)+2 =1 (HlOd 5k + 'I").
It results that if 5k + r is prime such that » = 1,4 and £ = r + 1 (mod 2), then
2(5k +r — 1) is a period of the Fibonacci sequence modulo 5k + 7. a

Corollary 4.10. A period of the Fibonacci sequence modulo 5k + r with 5k + r a
prime such that r =1,2,3,4 and k =r + 1 (mod 2) is given by

0k if r=1,
lspyr =< 2(5k+3) if r=2 or r=4,
o5k +4) if =3

or more compactly
lsirr =10+ 3(14+ (-1)") 4+ 2(r — 1)(1 = (=1)").
Corollary 4.10 follows from Theorems 4.8 and 4.9.

Corollary 4.11. A period of the Fibonacci sequence modulo p with p a prime which
is not equal to 5 is given by

0 2p—1) if p=1 (modb) or p=4 (mod}5),
p_{2(p+1) if p=2 (mod5) or p=3 (mod?5).

Proof. The Euclid division of p by 5 is written p = 5k 4+ r with 0 < r < 5 and
k=741 (mod 2). Then, applying Corollary 4.10, it gives:

r=1 p=5k+1 f,=1ls1=10k=2p—2=2(p—1)

r=2 p=5k+2 ly=UIlsp42=10k+6=2p+2=2(p+1)

r=3 p=5k+3 ly=/ly3=10k+8=2p+2=2(p+1)

r=4 p=5k+4 l=l5p44a=10k+6=2p—2=2(p—1). m]

Property 4.12. A period of the Fibonacci sequence modulo 5 is 20.

Proof. From Property 1.32, we know that F5; =0 (mod 5) with k£ € N. Using the
recurrence relation of the Fibonacci sequence, we have Fsi1 = Fsr1o (mod 5). So,
it is relevant to search a period as an integer multiple of 5. Trying the first non-zero
values of k, it gives:

k=1 F5k+1 = FG =3 (mod 5) F5k+2 = F7 =3 (mod 5)
k=2 F5k+1 = F11 =4 (mod 5) F5]€+2 = F12 =4 (mod 5)
k=3 F5k+1 = F16 =2 (mod 5) F5]€+2 = F17 =2 (mod 5)
k=4 F5k-+1 = Fgl =1 (mod 5) F5k+2 = F22 =1 (mod 5) O
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Property 4.13. Let k be a positive integer. Then, we have

Fsp41 = Fskg2 =1 (mod 5) if k=0 (mod 4),
Fsi41 = Fspy2 =3 (mod 5) if k=1 (mod 4),
Fsky1 = Fsgi2 =4 (mod 5) if k=2 (mod 4),
Fs41 = Fspyo =2 (mod 5) if k=3 (mod4)
Proof. Since F5, = 0 (mod 5), using the recurrence relation of the Fibonacci

sequence, we have Fsio = Fspi1 + Fsi = Fspp1 (mod 5).

If k=0 (mod 4) and k > 0, then there exists a positive integer m such that
k = 4m. So, if K = 0 (mod 4) and k > 0, since 20 is a period of the Fibonacci
sequence modulo 5 (see Property 4.12), then we have Fspi1 = Foomy1 = F1 = 1
(mod 5).

If k=1 (mod 4) and k£ > 0, then there exists a positive integer m such that
k =4m + 1. Using Theorem 1.27, it comes that

Fsi11 = Foomye = FsFoomy1 + F5Foom.

So, if k =1 (mod 4) and k > 0, since Fs = 8 = 3 (mod 5), F5 =5 =0 (mod 5)
and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have Fsi11 = FgF) =3 (mod 5).

If K =2 (mod 4) and k > 0, then there exists a positive integer m such that
k = 4m + 2. Using Theorem 1.27, it comes that

51 = Foomt11 = FriFoomy1 + FroFoom.

So,if k =2 (mod 4) and k > 0, since F1; =89 =4 (mod 5), F1p =55=0 (mod 5)
and since 20 is a period of the Fibonacci sequence modulo 5 (see Property 4.12),
then we have Fsr1 = F11F1 =4 (mod 5).

If K =3 (mod 4) and k£ > 0, then there exists a positive integer m such that
k = 4m + 3. Using Theorem 1.27, it comes that

Fsi41 = Faom+16 = Fi6F2o0m+1 + Fi5F20m.-
So, if & = 3 (mod 4) and k& > 0, since Fig = 987 = 2 (mod 5), Fi5 = 610 = 0
(mod 5) and since 20 is a period of the Fibonacci sequence modulo 5 (see Property
4.12), we have
F5k+1 = F16F1 =2 (mod 5) O

Property 4.14. Let k be a positive integer. Then, we have

Fsky3 =2 (mod 5) Fsk4a =3 (mod 5) if k=0 (mod 4),
Fski3=1 (mod 5) Fskpa =4 (mod 5) if k=1 (mod 4),
Fsky3 =3 (mod 5) Fs;04=2 (mod 5) if k=2 (mod 4),
F5k+3 =4 (mOd 5) F5k-+4 =1 (mOd 5) Zf k=3 (I'IlOd 4)
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Property 4.14 stems from the recurrence relation of the Fibonacci sequence and
Property 4.13.

Corollary 4.15. The minimal period of the Fibonacci sequence modulo 5 is 20.
Corollary 4.15 stems from Euclid division, Properties 4.12, 4.13 and 4.14.

Property 4.16. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, we have (m € N)
Fsmpr =0 (mod 5k + 1),

and
F5mk+1 =1 (mOd 5k + 1)

Proof. Let prove the property by induction on the integer m.
We have Fy =0 =0 (mod 5k + 1) and F; =1=1 (mod 5k + 1).
Moreover, from Properties 3.1 and 3.3, we can notice that

F5, =0 (mod 5k+ 1)

and
Fs;11 =1 (mod 5k +1).

Let assume that for a positive integer m, we have
Fsmi =0 (mod 5k + 1)

and
Fsmrr1 =1 (mod 5k + 1).

Then, using the assumption, Theorem 1.27 and Properties 3.1 and 3.3, we have
Fsm+)k = Fsmrtsk = FsmrFsiy1 + Fsme—1F5. =0 (mod 5k + 1)
and

Fsmsnyk+1 = Fsmrs14sk = Fsmpr1Fspp1 + FsmieF5 =1 (mod 5k + 1).
This completes the proof by induction on the integer m. O

Property 4.17. A period of the Fibonacci sequence modulo 5k + 1 with 5k + 1
prime is 5k.

This is a direct consequence of Property 4.16.

Property 4.18. A period of the Fibonacci sequence modulo 5k + 4 with 5k + 4
prime and k a non-zero odd positive integer is bk + 3.

Proof. From Properties 3.1, 3.3 and 3.5, we have

Fs113=0 (mod 5k +4),

27
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and
F5k+4 = F5k+5 =1 (mod 5k + 4)
So
F1+5k+3 = F2+5k+3 =1 (mod 5k + 4)
It results that 5k + 3 is a period of the Fibonacci sequence modulo 5k + 4. O

Corollary 4.19. A period of the Fibonacci sequence modulo p with p a prime which
is not equal to 5 is given by

, { p—1 if p=
Pl 2e+l) dif p=

Corollary 4.19 stems from Corollary 4.11 and Properties 4.17 and 4.18.

1 (mod5) or p=4 (mod?5),
2 (mod5) or p=3 (mod?5).

Property 4.20. Let 5k + 1 be a prime with k a non-zero even positive integer.
Then, for all m € [[0,5]]

(4.1) Fst— = (=)™ F,, (mod 5k + 1).

Proof. We prove this result by induction on the integer m.
From Properties 3.3 and 3.4, we have

F5,. =0 (mod 5k + 1),

and
Fs,-1 =1 (mod 5k +1).

So, we verify that (4.1) is true when m = 0 and m = 1. Notice that (4.1) is verified
when m = 5k since Fy = 0 = F5;, (mod 5k + 1).

Let us assume for an integer m € [0,5k — 1], we have Fyp_; = (—1)""1F;
(mod 5k + 1) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1),

Fstom-1=Fspmi1 — Fspomn = (=1)"Fp 1 — (1) F,,  (mod 5k + 1)
=(-1)"(Fp_1+ Fp) =(-1)"F,;1 (mod 5k 4 1)
=(-1)""F,1 (mod 5k + 1)

since (—1)? = 1. It achieves the proof of Property 4.20 by induction on the integer
m. O

Remark 4.21. Property 4.20 implies that we can limit ourself to the integer
interval [1, 28] (knowing that the case m = 0 is a trivial case) in order to search or
to rule out a value for a possible period of the Fibonacci sequence modulo 5k + 1
with 5k + 1 prime (such that k is a non-zero even positive integer) which is less than
5k. Notice that 5k is not in general the minimal period of the Fibonacci sequence
modulo 5k + 1 with 5k 4+ 1 prime (such that k is a non-zero even positive integer).
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Indeed, for instance, if 5k + 1 = 101 (and so for k = 20), then it can be shown
by calculating the residue of F,,, with m € [1,50] modulo 5k + 1 = 101, that the
minimal period is % = 50. Notice that in some cases as for instance k = 56, 84,
the number £ is the minimal period of the Fibonacci sequence modulo 5k + 1 with
5k 4+ 1 prime.

Theorem 4.22. Let 5k + 1 be a prime with k a non-zero even positive integer. If
k=0 (mod 4), then Fs. =0 (mod 5k 4 1).

Proof. If k is a non-zero positive integer such that k =0 (mod 4), then the integer

% is a non-zero even positive integer. Using Property 4.20 and taking m = %, we
have
F%E—F% (mod 5I€+1),
and
2F5. =0 (mod 5k + 1).
Since 2 and 5k 4+ 1 with 5k + 1 prime are relatively prime, we get
Fsi. =0 (mod 5k + 1). m|

2

Remark 4.23. We can observe that
F5k_1:F5k+17F5k2175k535F4 (HlOd 5k+2),

F5k,2 :F5k—F5k,1 E5]€-3E5k—F4 (mod 5/€+2),

and
F5k_3:F5k_1—F5k_256—5k‘ESEF6 (mod 5]€+2),

F5k_4 = F5k_2 — F5k_3 =5bk—11=5k— (F4 + Fﬁ) (mod 5k + 2)
Using induction we can show the following two properties.

Property 4.24. Let 5k + 2 be a prime with k odd. Then, we have
F5k—(2l+1) = FQ(l+2) (mod 5k + 2)
with | a positive integer such that [ < L%j

Property 4.25. Let 5k + 2 be a prime with k odd. Then, we have

-1
Fsp_o1 =5k =Y Fy(iy2) (mod 5k + 2)
=0

with | > 1 such that | < L%’“J
Remark 4.26. We can notice that

Fspya = Fspqs + Fspo = Fspqpo =5k + 1 (mod 5k + 2),
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Fsiys5 = Fspya + Fsprs = Fsp4 =5k + 1 (mod 5k + 2),

and
F5k+6 = F5k+5 + F5k+4 =10k + 2 = 5k (IIlOd 5k + 2)

And for [ > 1 we have

Fsiqsi42 = FyipoFspq1 + Faip1 Fsi = Faq0 + 5kF311 (mod 5k + 2)
= Fy + (5/€ + 1)F3l+1 =Fy — Fy41 + (5k + 2)F3l+1 (mod 5k + 2)
= F3l — F3l+1 = —F3[,1 (mod 5k + 2).

Furthermore, we have for [ > 1

Fspqa141 = Faip1 Fopyr + Fa Fsp = Fap1 + 5kF3  (mod 5k + 2)
=F31 + (5k + 1)F3[ =F3_1— F3 + (5k + 2)F31 (mod 5k + 2)
= F3l_1 — Fgl = —F3l_2 (mOd 5k + 2)

Besides, we have for [ > 1

Fspy31 = F31Fsp1 + F31—1F5 = F3; + 5kF3—; (mod 5k + 2)
=F3 o+ Bk +1)F3_1 = F3_90— F3_1 + (5k +2)F5—1  (mod 5k + 2)
= Fgl_Q — Fgl_l = 7F31_3 (mod 5k + 2)

We can state the following property, the proof of which follows from the above
remark and by using induction.

Property 4.27. F5py,, = —F,_3 (mod 5k + 2).

Theorem 4.28. Let 5k + 2 be a prime with k an odd positive number and let n a
positive integer. Then, we have

Fosk4+3) =0 (mod 5k + 2).

Proof. The proof of the theorem will be done by induction. We have Fy = 0
(mod 5k + 2). Moreover, we know that

Fs143=0 (mod 5k + 2).
Let us assume that
(4.2) Fosk+3) =0  (mod 5k + 2).
We have
Fony1)5k+3) = Frskt3)+56+3 = Fort3Fnre3)+1 + Fsrr2Fnirys)-
Since Fsry3 =0 (mod 5k + 2), using (4.2), we deduce that

F(n+1)(5k+3) =0 (mod 5k + 2) O
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The following follows very easily from the above theorem.
Corollary 4.28. If 5k + 3|m, then F,, =0 (mod 5k + 2).

Property 4.30. Let 5k + 2 be a prime with k an odd positive integer. Then, for
all m € [[0, 5k]]

(4.3) Fsten = (=1)™"E, 43 (mod 5k + 2).

Proof. Let us prove Property 4.30 by induction on the integer m. From Properties
3.1 and 3.3, we have
Fsr12 = -1 (mod 5k + 2),

and
Fs111 =1 (mod 5k + 2).

Using the recurrence relation of the Fibonacci sequence, it comes that
Fs;, = -2 (mod 5k + 2),

and
Fs;—1 =3 (mod 5k +2).

So, we verify (4.3) is true when m =0 and m = 1.

Notice that (4.3) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 2) and
Fs13 =0 (mod 5k + 2).

Let assume for an integer m € [[0,5k — 1]], we have Fyr_; = (—1)""1F 3
(mod 5k + 2) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1)

Fspem—1 = Fspemi1 — Fspem = (1) Fpuy2 — (=1)™ "' Fys  (mod 5k + 2)
= (—1)"(Fit2 + Frngs) = (=1)""Fp4 (mod 5k + 2)
= (—1)™*2F,, 14 (mod 5k +2)

since (—1)? = 1. It achieves the proof of Property 4.30 by induction on the integer
m. O

Notice that Property 4.30 is also true for m = —2, —1.

Remark 4.31. In general, the number 2(5k + 3) is not the minimal period of
the Fibonacci sequence modulo 5k + 2 with 5k + 2 prime such that k an odd
positive integer. Indeed, if & = 0 (mod 3), then in some cases as for instance
k=9,21,69,111,135,195,219, it can be verified that the numbers 2(5]?3) and 4(5];+3)
are periods of the Fibonacci sequence modulo 5k + 2 with 5k 4+ 2 prime.

Theorem 4.32. Let 5k + 2 be a prime number with k an odd positive number. If
k=3 (mod 4), then Fois =0 (mod 5k + 2).

Proof. Since 5k + 2 with k an odd positive number, is prime, the numbers 5k £+ 3
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are non-zero even positive integers. So, the numbers are non-zero positive

integers. Moreover, if £ = 3 (mod 4), then 5k — 3 = 12 = 0 (mod 4). So, the

; 5k—3 :
integer =5 is even.

5k+3
2

Using Property 4.30 and taking m = 5’“7_3, we have

F#E—Fsk# (mod 5]€+2),

or,
2Fsis =0 (mod 5k + 2).
Finally,
Fseis =0 (mod 5k + 2),
2
since 2 and 5k + 2 with 5k 4 2 prime are relatively prime. O

Theorem 4.33. Let 5k + 2 be a prime number with k an odd positive integer.
If k = 0 (mod 3) and if the number w is a period of the Fibonacci sequence
modulo 5k + 2, then the congruence

Fsk43 =0 (mod 5k + 2)
is equivalent to the congruence
Foia =0 (mod 5k + 2)
which is equivalent to the congruence
FW =0 (mod 5k + 2).
Moreover, if k =0 (mod 3) and if

Faes =0 (mod 5k + 2),

the number

if

2(5k+3) . . . ,
==5— is a period of the Fibonacci sequence modulo 5k + 2 if and only

Fo =—1 (mod 5k + 2).

Proof. If k =0 (mod 3) and k an odd positive integer, then there exists a non-zero
positive integer m such that k = 3m. Notice that m is odd since k is odd. Since
Fsi43 =0 (mod 5k+2) with 5k+2 prime (k positive odd), we have also Fi5.,4+3 = 0
(mod 15m+2) with 15m + 2 prime (m positive odd). Using Theorem 1.27, we have

Fi5m13 = Flomt245m+1 = Fsmi1F10m+3 + FsmFiom2.

Or, from Remark 4.6, we have

Fiomt2 = Fame1) = Fsmt1(Fsm + Fsmi2) = Fanpio — Fony,
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and
2 2
Fiom+s = Foismyny)+1 = Foppr + Foppo-

We have also
2 2
From+1 = Fsmasmyr = F5, 1 + F5,,.

So

Fism+s = Fomi1(Fm 1 + Famg2) + FsmFomi1(Fsm + Foma2)
= Fsma1 (Fon 1 + Fimyo + Fo + Fom Fomi2)
= Fsni1(3F2, + 3Fs Fsmi1 + 2F52m+1)
= Fsmy1(3Fsm Fsmta + 2F5,, 1)

So, the congruence Fis;y,+3 =0 (mod 15m + 2) with m an odd positive integer
such that 15m + 2 prime is satisfied if and only if either

Fsmi1 =0 (mod 15m + 2),

or
3FsmFsmie = —2F2, 1 (mod 15m + 2).

If F5;41 =0 (mod 15m + 2), then from above, we have necessarily
Fiom+2 =0 (mod 15m + 2).

Using the recurrence relation of the Fibonacci sequence, it implies also that Fs,, =
Fsp12 (mod 15m + 2). Moreover, we have

— 2 — 2
From+s = Fypye = Fyyy,

(mod 15m + 2).
Or, we have

Fismy2 = Flom+2+5m = FsmFrom+3 + Fsm—1F10m+2-

Since Fsiyo = 5k + 1 = —1 (mod 5k + 2) with 5k + 2 prime (k positive odd) and
so if k = 3m such that m positive odd,

Fl5m+2 =-1 (mod 15m + 2)
with 15m + 2 prime (m positive odd), since
Fiom+s = F2, (mod 15m + 2)

and
F10m+2 =0 (IHOd 15m + 2),

it implies that
FsmFiomsz = F2 = —1 (mod 15m + 2).
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We get
(4.4) F2 +1=0 (mod 15m +2),
and
(Fspn + 1)(F2, — Fsp +1) =0 (mod 15m + 2).
So, either
Fs5,, +1=0 (mod 15m +2)
or

F2 — Fs,+1=0 (mod 15m +2).
If F5,41 =0 (mod 15m + 2) and if F5,,, + 1 =0 (mod 15m + 2) and so
Fs5,, = -1 (mod 15m + 2),

then
Fiom+s =1 (mod 15m + 2),

It results that the number 10m + 2 is a period of the Fibonacci sequence modulo
15m + 2 with 15m + 2 prime and m an odd positive integer.
If F5i1 =0 (mod 15m + 2) and if F2,, — F5,, + 1 =0 (mod 15m + 2) and so

F2 =Fs,—1 (mod 15m +2),
then since Figmy3 = F2,, (mod 15m + 2),
Fiom+3 = F5, — 1 (mod 15m + 2).
Notice that in this case, we cannot have
Fsm=—1 (mod 15m + 2)

since 3 £ 0 (mod 15m +2) with m an odd positive integer such that 15m + 2 prime
(and so 15m + 2 > 3). Then, let assume absurdly that if

F2 — Fs,+1=0 (mod 15m + 2),

then the number 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2
with 15m + 2 prime and m an odd positive integer. In such a case,

F10m+3 =1 (mod 15m + 2)

which implies that
Fs, =2 (mod 15m + 2).

Since F2, = Fy,, — 1 (mod 15m + 2), it gives

4=1 (mod 15m + 2).



Some Properties of Fibonacci Numbers 35

But, since 15m+2 is a prime number such that m is an odd positive integer, we have
15m+2 >4 and so 4 # 1 (mod 15m +2). So, we reach to a contradiction meaning
that if F2, — F5,, +1 =0 (mod 15m + 2) and so if Fy,, Z —1 (mod 15m + 2), the
number 10m + 2 is not a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime and m an odd positive integer.

Moreover, if Fi, 1 =0 (mod 15m + 2) and reciprocally if the number 10m + 2
is a period of the Fibonacci sequence modulo 15m + 2 with 15m + 2 prime and m
an odd positive integer, then

Fiom+3 =1 (mod 15m + 2)

which implies that
F2 =1 (mod 15m + 2).

So, either
Fs5,, =1 (mod 15m + 2)

or
F5,, = -1 (mod 15m + 2).

Since we have (4.4), it remains only one possibility, that is to say
F5,, = -1 (mod 15m + 2).

M = 10m+2 is a period of the Fibonacci sequence, we must have Fig,, 43 =

F2, =1 (mod 15m + 2) in addition to the condition
Fsm+1 =0 (mod 15m + 2).

If 3F5,, Fsmao = —2F52mJr1 (mod 15m+ 2), then from Property 1.3, we can find
an integer c such that

Fsp Fsmio = —2¢  (mod 15m + 2),
FZ..1=3c (mod 15m +2).

So
Cc = F52m+1 +F5mF5m+2 (HlOd 15m+2),

or equivalently (Fsyq2 = Fsmi1 + Fsm and Fiomy1 = F2,, 4 + F2,)

c=FZ i1+ Fsmp1 Fsm + F2,,  (mod 15m + 2)
= Fiom+1 + Fsmt1F5n  (mod 15m 4+ 2).

So, if the number 10m+2 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m + 2 with 15m + 2 prime, we should have

Fiom+2 =0 (mod 15m + 2)
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and
Flom+1 = Fiom+s =1 (mod 15m + 2).

Since Figmi2 = F52m_~_2 — F2, and ¢ = Fiom+1 + Fsme1Fsm (mod 156m + 2), it
implies that
F2 =F2, ., (mod15m +2)

and
c=1+ F5mF5m,+1 (HlOd 15m + 2)
So, either
F5m = F5m+2 (mod 15m + 2)
or

Fs,, = —F542  (mod 156m + 2).
If F5,, = Fsmao (mod 15m + 2), then

Fs5,11 =0 (mod 15m +2)

and
c=1=0 (mod 15m + 2)

where we used the fact that
3c=F2,., (mod15m+2)

and (3,15m +2) = 1 with 15m + 2 prime. But, 1 # 0 (mod 15m + 2). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m = _F5m+2 (HlOd 15m + 2),
then using the recurrence relation of the Fibonacci sequence, we must have
F5m+1 = _2F5m (mod 15m + 2)

and so
c=1-2F2 =3F2 (mod 15m +2)

where we used the fact that
c= F52m+1 + F5mFsmtoe  (mod 15m + 2).

It implies that
5F2. =1 (mod 15m + 2)

and using Theorem 1.5, it gives

F2, =5""=6m+1 (mod 15m + 2)
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since 5%+ = 1 = 30m + 5 (mod 15m + 2) which implies that 5™ = 6m + 1
(mod 15m + 2) (reccall that 15m + 2 is prime and so (5,15m + 2) = 1). Since

Fspi1 = —2F5,, (mod 15m + 2),

F2 .1 =3c (mod 15m +2)

and
c=3F2, (mod 15m + 2),

it results that
F2 . =AF2, =3c=9F, (mod 15m + 2)

and so 4(6m + 1) = 9(6m + 1) (mod 15m + 2). Since 4(6m + 1) = 24m + 4 =
9m + 2 (mod 15m + 2), it implies that 45m + 7 =0 (mod 15m +2) and so 1 =0
(mod 15m + 2) which is not possible since 1 # 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 2 = 15m + 2 is prime with & = 3m and m an odd positive
integer, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime, then

Fi5m+3 =0 (mod 15m + 2)

if and only if
Fsm+1 =0 (mod 15m + 2).

Since Fism+ts = Fsp+3 = 0 (mod 5k + 2) is true when 5k + 2 is prime, we deduce
that
Fsers =0 (mod 5k + 2)

3

is also true when k =0 (mod 3) and 5k + 2 prime.
Thus, if 10m + 2 is a period of the Fibonacci sequence modulo 15m + 2 with
15m + 2 prime, then we have

Fisme3 =0 (mod 15m + 2)
if and only if
Fsp41 =0 (mod 15m + 2)

if and only if
Fs, = Fspnpo  (mod 15m + 2).

Besides,
Fsmi1 =0 (mod 15m + 2)

implies that
F10m+2 =0 (mod 15m + 2)

Reciprocally, if Figme2 =0 (mod 15m + 2), then

FZ2 =FZ ., (mod 15m +2).
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So, either
Fs,, = Fspq2  (mod 15m + 2)

or
Fsp = —Fs5my2  (mod 15m + 2).

If Fyp, = —Fsmyp2 (mod 15m + 2), then
F57n+1 = _2F5m (mod 15m + 2)

and since Frp11 = 0 (mod 15m + 2), using the fact that (2,15m + 2) = 1 with
15m + 2 prime such that m an odd positive integer (15m + 2 > 2),

Fs5,, =0 (mod 15m + 2).
But, then, if Figpmie =0 (mod 15m + 2), we have
F15m+2 = F10m+3F5m =0 (mod 15m + 2)

Or,
Fismi2 =—1 (mod 15m + 2).

It leads to a contradiction meaning that
F5m = _F5m+2 (HlOd 15m + 2)

is not possible. So, if Figm+2 =0 (mod 15m + 2), there is only one possibility, that
is to say
Fsp = Fsmy2  (mod 15m + 2)

which implies the congruence
Fs5mi1 =0 (mod 15m + 2)
and so which translates the congruence
Fismi2 =—1 (mod 15m + 2)

into the congruence
F2 =-1 (mod 15m +2)

which has at least one solution. So, if 10m + 2 is a period of the Fibonacci sequence
modulo 15m + 2 with 15m + 2 prime, then we have

F15m+3 =0 (mod 15m + 2)

if and only if
Fsmi1 =0 (mod 15m + 2)

if and only if
F5m = F5m+2 (mod 15m + 2)
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if and only if
Fiom+2 =0 (mod 15m + 2).
Since 10m+2 = 2(5m+1) = M with k& = 3m and m an odd positive integer,

from above, we conclude that the number w

sequence modulo 5k + 2 if and only if

is a period of the Fibonacci

Fsi = —1 (mod 5k + 2) O

3

Property 4.34. Let 5k + 3 be a prime with k an even positive integer. Then, for
all m € [[0, 5k]]

(4.5) Fsjom = (—1)"Fpyq  (mod 5k + 3).

Proof. Let us prove Property 4.34 by induction on the integer m.
From Properties 3.1 and 3.3, we have

Fsr13=—1 (mod 5k + 3),

and
Fs1.0=1 (mod 5k + 3).

Using the recurrence relation of the Fibonacci sequence, it comes that
F5k+1 = -2 (HlOd 5k + 3),

Fs;, =3 (mod 5k + 3),
and

F5k_1 =-5 (mod 5k + 3)

So, we verify (4.5) is true when m = 0 and m = 1.

Notice that (4.5) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 3) and
F5k+4 =0 (HlOd 5k + 3)

Let us assume for an integer m € [[0,5k — 1]], we have Fs;_; = (—1)'F;44
(mod 5k + 3) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1)

Frjmm—1 = Fsj—ms1 — Fspem = (=1)" ' Frys — (—1)"Fppa (mod 5k + 3)
= (=1)"" Y Fpis+ Fya) = (=1)* (=)™ 'F,45 (mod 5k + 3)
=(-1)""F,.5 (mod 5k + 3)

since (—1)? = 1. It achieves the proof of Property 4.34 by induction on the integer

m. O

Notice that Property 4.34 is also true for m = —3, -2, —1.
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Remark 4.35. It can be noticed that for £ = 0, 5k + 3 = 3 is prime and it can be
verified that 2(5k+4) = 8 for k = 0 is the minimal period of the Fibonacci sequence
modulo 3. Nevertheless, in general, the number 2(5k + 4) is not the minimal period
of the Fibonacci sequence modulo 5k + 3 with 5k 4+ 3 prime such that k& an even
positive integer. Indeed, if K = 1 (mod 3) and k an even positive integer, then in
some cases as for instance k = 22,52,70,112,148,244, it can be verified that the
2(5]§+4) and 4(5’;+4) are periods of the Fibonacci sequence modulo 5k + 3

numbers
with 5k + 3 prime.

Theorem 4.36. Let 5k + 3 be a prime number with k a non-zero even positive
number. If k =2 (mod 4), then

Foa =0 (mod 5k + 3).

Proof. Since 5k + 3 with k a non-zero even positive number, is prime, the numbers

5k + 4 are non-zero even positive integers. So, the numbers 2£E%4 are non-zero
positive integers. Moreover, if k = 2 (mod 4), then 5k — 4 = 2 (mod 4). So, the
integer % is odd.

Using Property 4.34 and taking m = 3£=2

2

, it gives
FME—FM (HlOd 5/€+3),
2 2

or,

2F5ia =0 (mod 5k + 3),

and finally,
Fsera =0 (mod 5k + 3),

since 2 and 5k + 3 with 5k 4 3 prime are relatively prime. O

Theorem 4.37. Let 5k + 3 be a prime number with k an even positive integer. If

k=1 (mod 3) and if 205k+4) 4o g period of the Fibonacci sequence modulo 5k + 3,

3
the congruence
Fsk44a =0 (mod 5k + 3)

is equivalent to the congruence
F% =0 (HlOd 5k'+3)
which is equivalent to the congruence

Foisrtay =0 (mod 5k + 3)
3

Moreover, if k = 1 (mod 3) and if F% =0 (mod 5k + 3), then the number
M s a period of the Fibonacci sequence modulo 5k + 3 if and only if

Fsiyr = —1 (mod 5k + 3).

3
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Proof. f k =1 (mod 3) and k an even positive integer, then there exists a non-zero
positive integer m such that k = 3m+ 1. Notice that m is odd since k is even. Since

Fs144 =0 (mod 5k + 3)
with 5%k + 3 prime (k positive even), we have also
Fismi9 =0 (mod 15m + 8)
with 15m + 8 prime (m positive odd). Using Theorem 1.27, we have
Fism+9 = F3(m+3) = Fasm+3)+5m+3 = Fsm+3F2(5m+3)+1 T Fom+2F2(5m+3)
= Fsmt3F10m+7 + Fsm+2F10m+6-

Or, from Remark 4.6, we have

2 2
From+6 = Fasm+3) = Fsm+3(Fsm+a + Fomia) = Fopa — Fonos
and
2 2
From+7 = Fasmy3)+1 = Fpmgs + Fomta-
We have also
Fiomts = Fsmiotsmis = Fop g+ Fo o

So

(Fis+ Fomis) + FomeoFomas(Fmea + Fomya)
(Fnis + Foppa + Fipia + Fomi2Fomia)

= Fym+43(3F, 1o + 3FsmioFsmis + 2F5, 1 3)

= Fsm13(3FsmyaFsmia+ 2F5,, 1 3).

Fismt9 = Fsmas

= F5m43

So, the congruence
Fismio =0 (mod 15m + 8)

with m an odd positive integer such that 15m + 8 prime is satisfied if and only if
either
Fs5me3 =0 (mod 15m + 8),

or
3FsmioFsmia = —2F2 .o (mod 15m + 8).

If Fsmy3 =0 (mod 15m + 8), then from above, we have necessarily
Fiom+6 =0 (mod 15m + 8).
Using the recurrence relation of the Fibonacci sequence, it implies also that

F5m+2 = F5m+4 (Il’lOd 15m + 8)
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Moreover, we have
Fiomir = F2, 4 =F2, .5 (mod 15m + 8).
Or we have,
Fismis = Flom+6+5m+2 = Fsmy2Flom+7 + Fsmi1Flom+6-

Since Fs13 = 5k +2 = —1 (mod 5k + 3) with 5k 4+ 3 prime (k positive even)
and so if £ = 3m + 1 such that m positive odd,

Fismis =—1 (mod 15m + 8)

with 15m + 8 prime (m positive odd), since Figmi7 = FZ, .5 (mod 15m + 8) and
Fiom+e6 =0 (mod 15m + 8), it implies that

FsmiaFiomi7 = Fipyo =—1 (mod 15m +8).

It comes that
F? ,o+1=0 (mod 15m +8),

or,
(Fsmi2 + 1)(Foio — Fsmi2 +1) =0 (mod 15m + 8).
So, either
Fsmi2+1=0 (mod 15m + 8),
or
FZ o= Fsmia+1=0 (mod 15m +8).
If F543 =0 (mod 15m + 8) and if Fs,100+ 1 =0 (mod 15m + 8) and so
Fspio =—1 (mod 15m + 8),

then

F10m+7 =1 (mod 15m + 8)

It results that the number 10m + 6 is a period of the Fibonacci sequence modulo
15m + 8 with 15m + 8 prime and m an odd positive integer.
If Fsq3 =0 (mod 15m+8) and if F2,, 5 — Fspp2+1 =0 (mod 15m+8) and
SO
FZ . 5=Fspia—1 (mod 15m +8),

then since Figmi7 = F2,, 5 (mod 15m + 8),
Fiomy7 = Fsmy2 —1 (mod 15m + 8).
Notice that in this case, we cannot have

F5m+2 =-1 (I’IlOd 15m + 8)
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since 3 # 0 (mod 15m + 8) with m an odd positive integer such that 15m + 8 prime
(and so 15m + 8 > 3). Then, let us assume absurdly that if F2 5 — Fynio+1=0
(mod 15m + 8), then the number 10m + 6 is a period of the Fibonacci sequence
modulo 15m + 8 with 15m + 8 prime and m an odd positive integer. In such a case,

F10m+7 =1 (mod 15m + 8)
which implies that
F5m+2 =2 (mod 15m + 8)

Since FZ, .5 = Fsmy2 — 1 (mod 15m + 8), it gives 4 = 1 (mod 15m + 8). But,
since 15m + 8 is a prime number such that m is an odd positive integer, we have
15m+8 >4 and so 4 # 1 (mod 15m +8). So, we reach to a contradiction meaning
that if F2,, 5 — Fsm42+1 =0 (mod 15m~+8) and so if Fs,12 # —1 (mod 15m+38),
the number 10m + 6 is not a period of the Fibonacci sequence modulo 15m + 8 with
15m + 8 prime and m an odd positive integer.

Moreover, if Fs,+3 =0 (mod 15m + 8) and reciprocally if the number 10m + 6
is a period of the Fibonacci sequence modulo 15m + 8 with 15m + 8 prime and m
an odd positive integer, then

Fiom+7 =1 (mod 15m + 8)

which implies that
FZ..,=1 (mod 15m +8).

So, either
F5m+2 =1 (mod 15m + 8)

or
F5m+2 =-1 (mod 15m + 8)

Since we have also
F? ., =-1 (mod 15m + 8)

(see above), it remains only one possibility, that is to say
Fspmyo =—1 (mod 15m + 8).
M = 10m + 6 is a period of the Fibonacci sequence, we must have
Fiomir = F2,,, =1 (mod 15m + 8)
in addition to the condition

Fsmi3 =0 (mod 15m + 8).

If 3F5mi2F5mya = —2F52m+3 (mod 15m + 8), then from Property 1.3, we can
find an integer ¢ such that

F5m+2F5m+4 = —2¢ (mod 15m + 8),
FZ,.3=3c (mod 15m + 8)
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So
(4.6) c=F2, .5+ FsmiaFsmya  (mod 15m + 8),
or equivalently (Fsm44 = Fsmis + Fspmge and Flomqs = F2, a3+ Fo o)

c=F2 s+ FsmisFsmio + Fop  (mod 15m + 8)
(47) = F10m+5 + F5m+3F5m+2 (mod 15m + 8)

So, if the number 10m+6 with m an odd positive integer is a period of the Fibonacci
sequence modulo 15m + 8 with 15m + 8 prime, we should have

F10m+6 =0 (mod 15m + 8)

and
Fiom+s = Fiomi7r =1 (mod 15m + 8).

Since Flom+6 = F52er4 - F9m+2 and from the relations Figm+6 =0 (mod 15m + 8)

s

2 2
and Fiomie = 04 — 52, We have

FZ. ., =F2, ., (mod15m+38)

and
c=1+ Fspi2Fsmis  (mod 15m + 8).
So, either
Fspmio = Fsmya  (mod 15m + 8)
or

F5m+2 = _F5m+4 (HlOd 15m + 8)
If Fsmio = Fsmya (mod 15m + 8), then

Fs543 =0 (mod 15m + 8)

and
c=1=0 (mod 15m + 8)

where we used the fact that
3c=F2,. 5 (mod 15m +8)

and (3,15m +8) = 1 with 15m + 8 prime. But, 1 £ 0 (mod 15m +8). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m+2 = _F5m+4 (HlOd 15m + 8),
then using the recurrence relation of the Fibonacci sequence, we must have

F5m+3 = _2F5m+2 (HlOd 15m + 8)
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and so
c=1-2F ,=3F ., (mod15m+38)

where we used (4.6). It implies that
5FZ..o=1 (mod 15m + 8)
and using Theorem 1.5, it gives
F2 ., =5"""0=9m +5 (mod 15m + 8)

since 51°™m*7 =1 = 45m + 25 (mod 15m + 8) which implies that 5°"+6 = 9m + 5
(mod 15m + 8) (recall that 15m + 8 is prime and so (5,15m + 8) = 1). Since
Fsmis = —2F5,42 (mod 156m + 8), F2, . 4 = 3¢ (mod 15m + 8) and ¢ = 3F2, .,
(mod 15m + 8), it results that

F2 s =AF2 ., =3c=9F2 ., (mod 15m +8)

and so 4(9m + 5) = 9(9m + 5) (mod 15m + 8). Since 4(9m + 5) = 36m + 20 =
6m +4 (mod 15m + 8), it implies that 75m + 41 =0 (mod 15m + 8) and so 1 =0
(mod 15m + 8) which is not possible since 1 # 0 (mod 15m + 2). So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 3 = 15m + 8 is prime with £ = 3m 4+ 1 and m an odd
positive integer, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8
with 15m + 8 prime,

Fismi9 =0 (mod 15m + 8)

if and only if
Fsmi3 =0 (mod 15m + 8).

Since Fismt9 = Fspra = 0 (mod 5k + 3) is true when 5k 4 3 is prime, we deduce
that
F5k+4 =0 (mod 5k + 3)
3

is also true when £ =1 (mod 3) and 5k + 3 prime.
Thus, if 10m + 6 is a period of the Fibonacci sequence modulo 15m + 8 with
15m + 8 prime, then we have

Fl5m+9 =0 (HlOd 15m + 8)

if and only if
Fsi3=0 (mod 15m + 8)

if and only if
Fsmi2 = Fsmya  (mod 15m + 8).

Besides,
F5m13=0 (mod 15m + 8)
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implies that
Fiom+6 =0 (mod 15m + 8).

Reciprocally, if Figmi+6 =0 (mod 15m + 8), then
FZ . o=F2, ., (mod15m+38).

So, either
F5m+2 = F5m+4 (mod 15m + 8)

or
F5m+2 = _F5m+4 (mod 15m + 8)

If F5m+2 = _F5m+4 (mOd 15m + 8), then
F5m+3 = *2F5m+2 (HlOd 15m + 8)

and since Fyp13 = 0 (mod 15m + 8), using the fact that (2,15m + 8) = 1 with
15m + 8 prime such that m an odd positive integer (15m + 8 > 2),

Fsppi2 =0 (mod 15m + 8).
But, then, if Figmi6 =0 (mod 15m + 8), we have
F15m+8 = F10m+7F5m+2 =0 (mod 15m + 8)

Or,
F15m+8 =-1 (mod 15m + 8)

It leads to a contradiction meaning that
F5m+2 = 7F5m+4 (mod 15m + 8)

is not possible. So, if Figm+¢ =0 (mod 15m + 8), there is only one possibility, that
is to say
F5m+2 = F5m+4 (mod 15m + 8)

which implies the congruence
Fs5mi3 =0 (mod 15m + 8)
and so which translates the congruence
Fism+s = -1 (mod 15m + 8)

into the congruence
F2..,=-1 (mod 15m + 8)

which has at least one solution. So, if 10m + 6 is a period of the Fibonacci sequence
modulo 15m + 8 with 15m + 8 prime, then we have

F15m+9 =0 (mod 15m + 8)



Some Properties of Fibonacci Numbers 47

if and only if
Fsmi3 =0 (mod 15m + 8)

if and only if
F5m+2 = F5m+4 (mod 15m + 8)

if and only if
F10m+6 =0 (IHOd 15m + 8)

Since 10m + 6 = 2(5m + 3) = w with £ = 3m + 1 and m an odd posi-

tive integer, from above, we conclude that the number M is a period of the

Fibonacci sequence modulo 5k + 3 if and only if Fsk% = —1 (mod 5k + 3). o

Property 4.38. Let 5k + 4 be a prime with k an odd positive integer. Then, for
all m € [[0, 5k]]

(4.8) Fsp—m = (—1)"Fes  (mod 5k +4).
Proof. From Properties 3.3 and 3.4, we have
Fs113=0 (mod 5k +4),

and
Fs1120=1 (mod 5k +4).

Then, using the recurrence relation of the Fibonacci sequence, it comes that
Frrpp1 =1 (mod 5k + 4),

Fs;, =2 (mod 5k +4),
and
F5k_1 =-3 (HlOd 5k +4)

So, we verify (4.8) is true when m =0 and m = 1.

Notice that (4.8) is verified when m = 5k since Fy = 0 = 0 (mod 5k + 4) and
Fs.13 =0 (mod 5k + 4).

Let assume for an integer m € [[0,5k — 1]], we have Fsp_; = (—1)'F; 3
(mod 5k + 4) with ¢ = 0,1,...,m. Then, using the recurrence relation of the
Fibonacci sequence, we have (0 < m < 5k — 1),

F5k—m—1 = F5k—m+1 - F5k—m = (*1)m71Fm+2 - (*1)mFm+3 (HlOd 5k + 4)
=(=1)"" Fpyo+ Frys) = (=)™ F1a  (mod 5k +4)
=(-1)*(-1)"'Fpa=(—1)""F,,4s (mod 5k + 4)

since (—1)2 = 1. It achieves the proof of Property 4.38 by induction on the integer
m. O

Notice that Property 4.38 is also true for m = —2, —1.
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Remark 4.39. Property 4.38 implies that we can limit ourself to the integer
interval [1, 5162—"’3] (knowing that the case m = 0 is a trivial case) in order to search
or to rule out a value for a possible period of the Fibonacci sequence modulo 5k + 4
with 5k +4 prime (such that & is an odd positive integer) which is less than 5k + 3.
Notice that 5k + 3 is not in general the minimal period of the Fibonacci sequence
modulo 5k + 4 with 5k + 4 prime (such that k is an odd positive integer). Indeed,
for instance, if 5k + 4 = 29 (and so for k = 5), then it can be shown by calculating

the residue of F, with m € [1,14] modulo 5k 4+ 4 = 29, that the minimal period is
5k+3 _ 14
5 .

Theorem 4.40. Let 5k + 4 be a prime number with k an odd positive number. If
k=1 (mod 4), then
Foees =0 (mod 5k + 4).

Proof. Since 5k + 4 with k an odd positive number, is prime, the numbers 5k 4+ 3
are non-zero even positive integers. So, the numbers % are non-zero positive
integers. Moreover, if K = 1 (mod 4), then 5k — 3 = 2 (mod 4). So, the integer
5k—3
2552 is odd.

5k—

Using Property 4.38 and taking m = Tg, it gives

F#E—Fsk% (mod 5]€+2),

or,
2Fsia =0 (mod 5k + 2),

finally,
Fsers =0 (mod 5k + 2)

2

since 2 and 5k + 4 with 5k 4 4 prime are relatively prime. O

Theorem 4.41. Let 5k + 1 be a prime with k a non-zero positive even integer. If
k=0 (mod 3) and if % is a period of the Fibonacci sequence modulo 5k + 1, then
the congruence

F5,. =0 (mod 5k + 1)

is equivalent to the congruence

Fste =0 (mod 5k +1)

3

which is equivalent to the congruence

3

Fi =0 (mod 5k + 1)

Moreover, if k =0 (mod 3) and if Fa =0 (mod 5k + 1), then the number % is
a period of the Fibonacci sequence modulo 5k + 1 if and only if

Fsexs =1 (InOd 5k + 1).

3
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Proof. If k =0 (mod 3) and k a non-zero positive even integer, then there exists
a non-zero positive integer m such that £k = 3m. Notice that m is even since k is
even. Since F5p =0 (mod 5k + 1) with 5k + 1 prime (k positive even), we have also
Fi5m =0 (mod 15m 4 1) with 15m + 1 prime (m positive even). Using Theorem
1.27, we have

Fism = Flomtsm = FsmFlom+1 + Fsm—1F1om,

Fiom-1= Fsm—145m = Fop + Fop 1
From Remark 4.6, we have

Fiom = Foxsm = Fsm (Fsmy1 + Fom—1) = F52m+1 — F52m_1,

2 2
From+y1 = Foxsma1 = Fgpn + Fop-
So

Fism = Fsp(Fe i1 + Fon) + Fsm—1Fsm (Fsmi1 + Fspme1)
= F5m(F52m+1 + F52m + Fsm—1F5m41 + F52m—1)

= F5n(3F2 | +3Fs5_1Fs 4+ 2F2))

= Fsm(3Fsm_1Fsmy1 +2F2).

So, the congruence Fis,;, = 0 (mod 15m + 1) with m an even positive integer
such that 15m + 1 prime is satisfied if and only if either

Fs5,, =0 (mod 15m + 1)

or
3F5m_1Fsmy1 = —2F2, (mod 15m + 1).

If F5,, =0 (mod 15m + 1), then from above, we have necessarily
Fio, =0 (mod 15m + 1).

Using the recurrence relation of the Fibonacci sequence, it implies also that Fy,, 11 =
Fs—1 (mod 15m + 1). Moreover, we have

F10m+1 = F52m+1 = F52m—1 (IIlOd 15m + 1)
Or, using Theorem 1.27, we have
Fismt1 = Fsmt1om+1 = From+1Fsmy1 + FromEsm.

Since Fspy1 =1 (mod 5k + 1) with 5k + 1 prime (k non-zero positive even) and so
if k = 3m such that m non-zero positive even,

F15m+1 =1 (Il’lOd 15m + 1)
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with 15m + 1 prime (m non-zero positive even), since
Fioms+1 = F2, .1 (mod 15m +1)

and
Fiom =0 (mod 15m + 1)

it implies that

F10m+1F5m+1 = Fgm+1 =1 (IIlOd 15m + 1).

We get
(4.9) F? .1 —1=0 (mod 15m+1)
and
(Fsmt1 — 1)(Faiq + Fsmy1 +1) =0 (mod 15m + 1).
So, either
F511—1=0 (mod 15m + 1)
or

F2 i+ Fspmp1+1=0 (mod 15m +1).
If F5p, =0 (mod 15m + 1) and if F5,41 — 1 =0 (mod 15m + 1) and so
Fsme1 =1 (mod 15m + 1),

then
FlO'rrH-l =1 (mOd 15m + 1)

It results that the number 10m is a period of the Fibonacci sequence modulo 15m+1
with 15m+1 prime and m a non-zero positive even integer. If F,,, =0 (mod 15m+
1) and if F2, | 4 Fsmi1+1=0 (mod 15m + 1) and so

F52m+1 =—Fsmy1— 1 (mod 15m + 1)
then since

Fiomi1 = F2,, 1 (mod 15m + 1)
= —F5my1 — 1 (mod 15m + 1).

Notice that in this case, we cannot have
F5m+1 =1 (I'IlOd 15m + 1)

since 3 £ 0 (mod 15m+2) with m a non-zero positive even integer such that 15m+1
prime (and so 15m+1 > 3). Then, let us assume absurdly that if F2, | + Fsmq1 +
1 =0 (mod 15m + 1) then the number 10m is a period of the Fibonacci sequence
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modulo 15m + 1 with 15m + 1 prime and m a non-zero positive even integer. In
such a case,
Fiom+1 =1 (mod 15m + 1)

which implies that
Fspmy1 = -2 (mod 15m 4+ 1).
Since FZ, .1 = —Fsnq1 — 1 (mod 15m + 1) it gives
4=1 (mod 15m + 1).

But, since 15m + 1 is a prime number such that m is a non-zero positive even
integer, we have 15m + 1 > 4 and so 4 # 1 (mod 15m + 1). So, we reach a
contradiction meaning that if F2 | + Fsmi1 +1 = 0 (mod 15m + 1) and so if
Fsp11 Z 1 (mod 15m + 1) then the number 10m is not a period of the Fibonacci
sequence modulo 15m + 1 with 15m + 1 prime and m a non-zero positive even
integer. Moreover, if Fs,;, = 0 (mod 15m + 1) and reciprocally if the number 10m
is a period of the Fibonacci sequence modulo 15m + 1 with 15m + 1 prime and m
a non-zero positive even integer, then

Fiom+1 =1 (mod 156m + 1)
which implies that
FZ2 . =1 (mod 15m + 1).

So, either
F5m+1 =1 (mod 15m + 1)

or
F5m+1 =-1 (mod 15m + 1)
Since we have (4.9), it remains only one possibility, that is to say
Fspmy1 =1 (mod 15m + 1)
10

Tk = 10m is a period of the Fibonacci sequence modulo 15m + 1, we must have
Fiom+1 = F2,,1 =1 (mod 15m + 1) in addition to the condition

F5,m, =0 (mod 15m + 1).

If 3F5,—1F5m41 = —2F2, (mod 15m + 2) then from Property 1.3, we can find an
integer ¢ such that

F5m—1F5'm+1 = —2c (mod 15m + 1),
F2. =3c (mod 15m + 1),

or equivalently (Fsp41 = Fsm + Fsm-1 and Fiom—1 = F2,, + F2,_,)

c= F52m + Fspo1Fsmy1 (mod 156m + 1)
= F52m + Fsm—1F5m + F52m—1
= FlOm—l + F5m—1F5m (I'IlOd 15m + 1)
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So, if the number 10m with m a non-zero positive even integer is a period of the
Fibonacci sequence modulo 15m + 1 with 15m + 1 prime, we should have

Fipm =0 (mod 15m + 1)

and
F]_Omfl = F10m+1 =1 (mod 15m + 1)

Since Fiopm = F2,, 1 —FZ,,_1 and ¢ = Figm—1+Fsm—1F5y, (mod 15m+1) it implies
that
F52m+1 = Fszm_l (mod 15m + 1)

and
c=14 Fs5p—1F5, (mod 15m + 1).
So, either
Fsmy1 = Fsm1 (mod 15m + 1)
or

F5m+1 = 7F5m_1 (IIlOd 15m + 1)
If F5mt1 = Fsm—1 (mod 15m + 1) then

Fs5,, =0 (mod 15m + 1)

and
¢c=1=0 (mod 15m+1)

where we used the fact that
3c=F2, (mod 15m + 1)

and (3,15m+ 1) = 1 with 15m + 1 prime. But, 1 # 0 (mod 15m+1). So, we reach
a contradiction meaning that this case is not possible. Otherwise, if

F5m+1 = _F5m—1 (HlOd 15m + 1)
then using the recurrence relation of the Fibonacci sequence, we must have
F5m = *2F5m_1 (mod 15m + 1)

and so
c=1-2F2, =3F2 , (mod 15m + 1)

where we used the fact that
c=F2 + Fsm_1Fsmy1  (mod 15m +1).

It implies that
5F2. =1 (mod 15m +1)
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and using Theorem 1.5, it gives
F2  =5Y""1=12m+1 (mod 15m +1)

since 5% =1 = 60m + 5 (mod 15m + 1) which implies that 5!°"~1 = 12m + 1
(mod 15m + 1) (recall that 15m + 1 is prime and so (5,15m + 1) = 1. Since F5,, =
—2F5,—1 (mod 15m+1), F2, = 3¢ (mod 15m+1) and ¢ = 3F2,,_; (mod 15m+1),
it results that
F2 =9F2 | =3c=4F2 | (mod 15m+1)

and so 4(12m + 1) = 9(12m + 1) (mod 15m + 1). Since 4(12m + 1) = 48m +4 =
3m+1 (mod 15m + 1), it implies that 105m +8 =0 (mod 15m + 1) and so 1 =0
(mod 15m + 1) which is not possible since 1 #Z 0 (mod 15m + 1)0. So, we obtain
again a contradiction meaning that this latter case is not also possible.

Therefore, when 5k + 1 = 15m + 1 is prime with & = 3m and m a non-zero
positive even integer, if 10m is a period of the Fibonacci sequence modulo 15m + 1
with 15m + 1 prime, then

Fi5,, =0 (mod 15m + 1)

if and only if
Fs5,, =0 (mod 15m + 1).

Since Fi5,, = F5, =0 (mod 5k + 1) is true when 5k + 1 is prime, we deduce that

Fse =0 (mod 5k + 1)

3

is also true when k£ =0 (mod 3) and 5k + 1 prime.
Thus, if 10m is a period of the Fibonacci sequence modulo 15m+1 with 15m+1
prime, then we have
Fism =0 (mod 15m + 1)

if and only if
Fs5,, =0 (mod 15m + 1)

if and only if
F5m—1 = F5m+1 (mod 15m + ].)

Besides,
F5,, =0 (mod 15m + 1)

implies that
Fipm =0 (mod 15m + 1).

Reciprocally, if Fig, =0 (mod 15m + 1) then

FZ. . =F2,  (mod15m+1).

93
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So, either
Fsq1 = F5-1 (mod 15m + 1)

or
F5m+1 = _F5m71 (HlOd 15m + 1)

If F5m+1 = _F5m71 (mod 15m + 1) then
F5'm = _2F57n—1 (mod 15m + 1)

and since F5,;, =0 (mod 15m+1) using the fact that (2,15m+1) = 1 with 15m+1
prime such that m is a non-zero positive even integer (15m + 1 > 2),

F5—1 =0 (mod 15m + 1).
But, then, if Fig,;, =0 (mod 15m + 1) we have
Fl5m+1 = F10m+1F5m+1 =0 (mod 15m + 1)

Or,
Fismi1 =1 (mod 15m + 1).

It leads to a contradiction meaning that
F5m+1 = _F5m—1 (HlOd 15m + 1)

is not possible. So, if Fig,, =0 (mod 15m + 1) there is only one possibility, that is
to say
Fsq1 = Fs—1 (mod 15m 4+ 1)

which implies the congruence
F5,, =0 (mod 15m + 1)
and so which translates the congruence
Fismi1 =1 (mod 15m + 1)

into the congruence
F? .1 =1 (mod 15m + 1)

which has at least one solution. So, if 10m is a period of the Fibonacci sequence
modulo 15m + 1 with 15m + 1 prime, then we have

Fi5m =0 (mod 15m + 1)

if and only if
F5, =0 (mod 15m + 1)

if and only if
F5m+1 = FSm—l (mod 15m + 1)
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if and only if
Fiom =0 (mod 15m + 1).

Since 10m = % with £k = 3m and m a non-zero positive even integer, from above,
we conclude that if Fsx = 0 (mod 5k + 1), then % is a period of the Fibonacci

sequence modulo 5k +31 with 5k 4 1 prime if and only if
Foes =1 (mod 5k +1). O

Theorem 4.42. Let 5k + 4 be a prime with k an odd positive integer. If k = 0
(mod 3) and if W is a period of the Fibonacci sequence modulo 5k + 4, then

the congruence
Fs113 =0 (mod 5k +4)

18 equivalent to the congruence

Fsips =0 (mod 5k + 4)

3

which is equivalent to the congruence

Fasres) =0 (mod 5k + 4)
3

Moreover, if k =0 (mod 3) and ifFE)lcsj =0 (mod 5k+4), then the number w
18 a period of the Fibonacci sequence modulo 5k + 4 if and only if

Fsi =1 (mod 5k +4)

3
Proof. The proof is very similar to the proof of Theorem 4.33. a

The next theorem below is a generalization of Theorems 4.33, 4.37 and Theorem
4.41 and 4.42 given above. The number 55, with 5k+r prime such that r € [[1, 4]]
and k = r + 1 (mod 2) is a period of the Fibonacci sequence modulo 5k + 7. Its
expression is given in Corollary 4.10.

Theorem 4.43. Let 5k+r be a prime such that r € [[1,4]] and k =7 +1 (mod 2).
Ifk = “_1)2& (mod 3) and if 25’“% is a period of the Fibonacci sequence modulo
5k + r, then the congruence

Fesk% =0 (mod 5k +7)
1s equivalent to the congruence

dek% =0 (mod 5k +r)
which is equivalent to the congruence

Fegp, =0 (mod 5k + 7).
3
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Moreover, if k = % (mod 3) and if Ffsfi;rr = 0 (mod 5k + 7), then the

L5ktr
3

number is a period of the Fibonacci sequence modulo 5k + r if and only if

r _ 1 (modbk+r) if r=1 or r=4,
Sir 3=\ 1 (mod5k+r) if r=2 or r=3.

Proof. The results stated in Theorem 4.43 can be deduced from Theorems 4.33,
4.37 and Theorems 4.41 and 4.42 given above. O

5. Some Results on Generalized Fibonacci Numbers

In this section, we deduce some small results related to the generalized fibonacci
numbers as defined below.

Definition 5.1. Let a, b, r be three numbers. The sequence (C, 2(a, b, r)) is defined
by
Crala,b,r)=Cho12(a,b,r) + Cpr_o2(a,b,r)+7, Yn>2

with
Coz(a,b,r)=b—a—r,
Ci2(a,b,r) = a.

In particular, we have
F, =C,2(1,1,0), Vn>0.
Remark 5.2. This sequence can be defined from n = 1 by setting Co 2(a,b,7) =b
as in [1].
Proposition 5.3. Let a,b,r be three numbers. The sequences (Cp2(a,b,r)),
(Cn2(1,0,-1)), (Fy) satisfies
Cmg(a, b, ’I") = aFn_g =+ bFn_l — ’I"Cn_;,_LQ(l, O, 71), Vn Z 2

Proof. Let a,b,r be three numbers. Let us prove Proposition 5.3 by induction on
the integer n > 2. We have

0272(a,b7T):b:aX0+bX1+TX0:aXF0+bXF177")(03,2(1,0,71)

Let us assume that this proposition is true up to n > 2. Using the recurrence
relations of sequences (Cy, 2(a, b, 7)), (Cp2(1,0,—1)) and (F},), we have
Cryi1,2(a,b,7) =Cy 2(a,b,7) + Cr_i12(a,b,r) + 1
=(aFy—2 +bF,—1 —rCpt1,2(1,0,—1))
+ (aF—3 + bFy—2 —1Cp2(1,0,-1)) +r
=a(F,—o+ F,_3)+b(F—1 + F,—2)
—1(Cpg1,2(1,0,—1) 4+ Cp, (1,0, -1) — 1)
=aF,_1 + bF, —rCp422(1,0,—1).
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Thus by induction, the proof is complete. O

Proposition 5.4. The sequences (C, 2(1,0,—1)) and (F,,) satisfies
Cn’Q(].,O, —1) = Cn,Q’Q(]., 0, —1) — Fn,Q, Vn Z 2.

n—3
Cnp(1,0,=1) ==Y Fy, Vn>4.
k=1

From Proposition 5.3, for any numbers a,b,r, it results that

n—2

Cn,Q(avbﬂﬁ) =akF,_o+bF,_; +TZFk> Vn>2
k=1

Cro(a,byr)=aF,_o+bF,_1+r(F,—1), Vn>2.

This result can be easily verifies using mathematical induction and Theorem
1.26 and Proposition 5.4. We shall omit the details here.
The theorem below appears in any standard linear algebra textbook.

Proposition 5.5. (i) A linear recurrence sequence (up)n>0 of order 2 which satis-
fies a linear recurrence relation as

Up = Q1 Up_1 + QaUp_2, VN > 2

with a1, ag in a field K (K =R or K = C), is completely and uniquely determined
by its first terms ug and u.
(ii) If (un)n>0, (Un)n>0 are two linear recurrence sequences of order 2 such that

UuUp Vo
det = - £
€ ( u vy ) Upv1 U1V 0

then any linear recurrence sequence (wy)n>o of order 2 is uniquely written as
(wn)nZO = >\(U7l)n20 + ,UJ(Un)nZO

with A, pin a field K (K =R or K =C).

Proof. The statement (i) is proved by induction.

The statement (ii) can be proved from (i) and from the Cramer’s rule for system of
linear equations. O

Definition 5.6. Let k be an integer which is greater than 2 and let ag,...,a5_1
be k numbers. The sequence (F, x(ao, ..., ax—1)) for k > 2 is defined by

For(ao,...,ak-1) = Foo1k(ao, ..., ak—1) + Fo_kr(ao, ..., ax—1), Vn >k
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with

Fi’k(ao, ey ak,l) =a;, Vi€ {0, N 1}
The sequence (F), k(ao,...,ar—1)) is called the k-Fibonacci sequence with initial
conditions aq, ..., ak_1.

Proposition 5.7. Let ag,ay, be two numbers. The 2-Fibonacci numbers sequence
(Fn2(ao0,a1)) has general term

Fr2(ag,a1) = ap™ +B(1 —¢)", Yn>0

1+v5
2

where p = is the golden ratio and

_ap(p—1)+a B
o = \/5 I B_

apgp — ai

In particular, we have
Fn = n,Q(O; 1)7 Ln - n,2(27 ]-)

Proof. Let ag,a; be two numbers. Using the relation of recurrence of the sequence
(Fh,2(ag,a1)) and taking the Ansatz F), 2(ag, a1) = 2", we have for n > 2

Zn — Zn—l T Zn—2.

For z # 0, it gives (n > 2) 22 — 2 — 1 = 0. The discriminant of this polynomial
equation of second degree is A = /5. So, the roots of this equation are:
1+6 1-5

1_
2 4 2

We can notice that any linear combination of ¢™, (1 — ¢)™ for n > 0 verifies the
equation 2" = z" 1 4+ 2" 2 form > 0. Since 0 = 0- " = 0- (1 — )", the
sequences which satisfy the recurrence relation of sequence (F), 2(ag,a1)) form a
vector subspace of the set of complex sequences. Given ag,a;, from Theorem 5.5
above, since

det<30 1 )_12<p_\/57é0

L—¢
we deduce that there exist two numbers «, 8 such that
Fra(ag,a1) = ap™ + B(1 —¢)".

Since
Fy2(ag,a1) =ap Fy s(ag,a1) = ar,

the coefficients «, 8 verify the matrix equation

(o1 20)(5)=(o)
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So: .
« . 1 1 B Qo
B p -9 ay
where L
(o 1le) w070 4)
2 NG ¢ -1
So:
(3)- (")
B \/5 Qoy — a1 ’
Proposition 5.8. Let ag,a; be two numbers. We have
Fo2(ag,a1) = agFpy1 + (a1 — ag)Fn, Vn > 0.
Proof. From Proposition 5.7, we have
-1 n _ 1— n
Foa(ao, a1) = (a0(p — 1) + a1)p" + (aop — a1)(1 — ¢)
V5
_allp—Dg" + ol —9)"[+arp" — (1 —¢)"]
V5
(1—<p)<p”—so(1—¢)"} {w”—(l—w)"}
= —q +a L Sl
L= )+ (1—p—1)(1— )"
_ _ao{( P)e" +( \/;7 )L —9) }+a1Fn
n_(1— n n+1_1_ n+1
:_ao{w (1-¢) _(so (1—-¢) )}Hth
V5 V5
= _GO(Fn - Fn+1) + aan
= agFny1 + (a1 — ag) F. O

Proposition 5.9. Let z be a real complex number such that ¢|z| < 1. We have

z z

—+o0
F n: =
D [(=rEe R S FRs

This is a standard result and we omit the proof here.

Example 5.10. Applying Proposition 5.9 when z = 1/2, we have

2 (1-9) I+ 2+2-9p-¢* 2+9-(p+])

=XF, 1/2 2 2
3 /

n=0
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+oo
Thus szﬁ =1.
n=0

Proposition 5.11. Let z be a real complex number such that p|z| < 1. Let ag and
a1 be two numbers. We have the generating function

ZOOF an.a1) 2" — a0+(a1_a0)z _ a0+(a1—ao)z
n,2\40, &1 (17502)(1724»@2) 172722 .

Proof. Let z be a real complex number such that ¢|z| < 1. When z = 0, we have

—+o0
(ZFn,2(ao, al)Z"> = Foz(ag, a1) = ao
n=0

z=0

<(1 i();)(ff__ji)’;z)>z_o = ao.

So, the formula of Proposition 5.11 is true for z = 0. In the following, we assume
that z # 0. From Proposition 5.8, we know that

and

Fo2(ap,a1) = agFpy1 + (a1 — ag)Fy, ¥n > 0.

So, using Proposition 5.9, we have (¢|z| < 1 and z # 0)

ZFnQ a07a1 = GOZFR+1Z —|- a1 — ag ZF 2"

r (p|z] <1 and z #0)

+0o0 1 +o0 1 400
ZFH_HZ" = ;ZFn_Hz””Ll = ;ZF 2" = fZF 2"
n=0 n=0 n=1

where we used the fact that Fy = 0.
It follows that (¢|z| < 1 and z # 0)

+oo a “+o0

E Fn72(ao,a1)2n = (70 + a1 — Clo) E Fnz".
z

n=0 n=0

From Proposition 5.9, it results that (¢|z| < 1 and z # 0)

vt 20T z (1—p2)(1— 2+ ¢z)
ag+ (a1 —ap)z  ap+ (a1 —ap)z

:(1fcpz)(1fz+cpz)_ 1—2z—22
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Since this relation is also true for z = 0 (see above), this relation is true for
plz] < 1. a

Example 5.12. Applying Proposition 5.11 when ap = 2, a; = 1 and z = 1/3, since
F,2(2,1) = L, for all n > 0, we have

*f&i 2-3 1 15 B,
S (1-%)(1-3+%) 6+e—¢* Gre—(p+l) 5 7
+oo
Therefore Z?ﬁ% =1.
n=0

Proposition 5.13. Let z be a real complex number such that p|z| < 1. Let a,b,r
be three numbers. We have

22 [(az + b)(1 — 2) + rz]
1—2z+23

ZCn,Q(a,b, r)z'=b—a—r+az+

or equivalently

+oo
na(l=2)(2z—1)+b(1 —2)*+r(2z — 1)
ZCH,Q a,b,r)z" = =21 5 .

This result can be derived routinely using the results we have derived so far.
Although the proof is a little involved, but it follows essentially the same pattern
as the previous result. So for the sake of brevity we shall omit it here.

Example 5.14. Applying Proposition 5.13 when z = 1/2, we have

io Chra(a,b,r)

= 2b.
on

NN

n=0

Chp 2(ab 7‘)
So § —ontl

Applylng Proposition 5.13 when a = —r =1, b =0 and z = 1/3, we have

+OOCTI,2(1707_1) _ g( l) (_l) _
Sostecn_iCh-C)

2
1
§+

Wl

-

n=0

Ch.2(1,0, —1) 1
So, Z T = 1o
Proposition 5.15. Let ag,a; be two numbers. We have

Fiyi2(a0,a1) = Fia2(ao, a1)Fr+1 + Fi—12(a0,a1)Fg, VE>0, VI>1,
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or equivalently
Fiti2(a0,a1) = Fi2(Fy2(ao, a1), Fiy1,2(a0,a1)), Vk>0, VI>0.

Proof. Let ag, a; be two numbers. From Proposition 5.8, we know that for k+1 > 0
we have

Fiti2(a0,a1) = aoFiqi41 + (a1 — ag) Fqi-

Using Theorem 1.27, we have

Fiti,2(a0,a1) = ao(Fi41 Fr1 + FiFy) + (a1 — ao) (FiFieq1 + Fi—1F)
= (aoFi41 + (a1 — ao) F1) Fq1 + (aoFy + (a1 — ao)Fi—1) F.

Using Proposition 5.8, we get

Fiy12(a0,a1) = Fi2(ag, a1)Frq1 + Fi—1 2(ao, a1) Fi,
= Fi2(Fi2(a0,a1), Fi41,2(ao, a1)). O

In a similar way we can obtain the following result by using the corresponding
results dervide so far.

Proposition 5.16. Let a,b,r be three numbers. We have:
Crti2(a,b,7) = Ci-1,2(a,b,7) Fi. + Ci 2(a, b, 7) Fy 1 +7(Fri2 —1), VE>0, VI>1,
or equivalently

Crii12(a,b,7) = Cry22(Ci_12(a,b,7),Cro(a,b,r),r), Yk>0, VI>1.

We now have the following more general results.
Theorem 5.17. Let ag,a; be two numbers. We have
Fi2(aoFi-1,2(a0,a1) + a1 F12(ao, a1), agFi2(ao, a1) + a1 Fi41,2(ag, a1))

= Fj2(a0, a1)Fr+1,2(a0, a1) + Fi—1,2(ao, a1)Fr 2(a0, 1), Vk>0, VI >1

The proof is an easy application of Proposition 5.9 and we shall omit it here.

Theorem 5.18. Let a,b,r be three numbers. We have

Ck,2(aCi-1,2(a, b,7)+bCy 2(a, b, 1), (a+r)Ci2(a, b,7)+b(Cii1,2(a, b,7) =), 7(Cry1,2(a, b,r)—1))

(5.1) = Ci2(a,b,7)Cry1,2(a,b,7) + Ci—1,2(a,b,7)Cx 2(a,b,7), VK >0, VI>1.

Using Proposition 5.5 and the principle of mathematical induction the above
result can be verified. We omit the details here.
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Remark 5.19. Using Proposition 5.4 and using Proposition 5.8, we can notice that
(5.2) Cn2(a,b,0) =F,2(b—a,a), Yn>0
Indeed, we have (n > 0)

Foob—a,a)=(b—a)F 41+ (a—b+a)F, =(b—a)F,41 + (2a —b)F,
Using the definition of the Fibonacci sequence, we have for n > 2

Fn,g(b—a,a) CL)(Fn +Fn—1) + (2a—b)(Fn_1 +Fn—2)

—a)2F, 1+ F2) 4+ (20 = b)(Fp—1 + Fli—2)
(b—a)+2a—b)F,_1+(b—a+2a—0b)F,_2=bF,_1+aF,_»

= (b
= (b
= (2
=aF,_o+bF,_1 = Cp2(a,b,0).

Since Fp2(b—a,a) = Co2(a,b,0) =b—a and Fy 2(b — a,a) = C1 2(a,b,0) = a,
the formula derived above for n > 2 is also true for n = 0 and for n = 1.

Taking r = 0 in Theorem 5.18, it can be shown that Theorem 5.17 is a particular
case of Theorem 5.18. Indeed, since (I > 1):

CLCI’Q(GJ, b, 0) + bClJrl’Q(a, b7 0) — (aCl,l,g(a, b, 0) + bCl,Q(a, b, 0))

= a(C’l’Q(a, b, 0) - 017172(04, b, 0)) + b(C’lH,g(a, b, 0) - Cl,2 ((L, b, 0))
and so (I > 2):

aC2(a,b,0) + bCj41,2(a,b,0) — (aCi—1 2(a, b, 0) + bCy 2(a, b,0))
= aCj_22(a,b,0) +bC)_12(a,b,0)
using the relation (5.2), we have (k> 0 and | > 2):
C2(aCi—1,2(a,b,0) + bC) 2(a,b,0),aC 2(a,b,0) + bCj4+1,2(a, b, 0),0)
= F}2(aCi—22(a,b,0) + bCi_1 2(a, b, 0),aCi_1 2(a, b, 0) + bC) 2(a, b, 0))
= Fi2((b—a)Ci—1,2(a,b,0) + a(Ci_2,2(a,b,0) + Cj_12(a,b,0)), (b — a)Cy 2(a,b,0)
+a(Ci—1.2(a,b,0) + Cp2(a,b,0))).
So (k>0and!>1):
Cr2(aCi—1,2(a,b,0) + bCj 2(a,b,0),aC 2(a,b,0) + bCj41,2(a, b, 0),0)
= Fyo((b—a)Ci—1,2(a,b,0) + aC2(a,b,0), (b — a)C)2(a,b,0) + aCit1 2(a, b, 0))
=Fro((b—a)Fi_12(b—a,a)+aF;2(b—a,a),(b—a)Fi2(b—a,a)+aFi412(b—a,a)).
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Moreover, from Theorem 5.18, we have (k > 0 and [ > 1):
Ck72(aC’l_1,2(a, b7 O) =+ bCl,g(a, b, O), CLCl,Q(CL, b, O) + bCH_l,g(a, b, O), O)

= Clg(Cl, ba O)Ck-‘rl,Q(a'a b; O) + Cl—1,2(a7 ba O)Ck,Q(a'a ba 0)
=F2(b—a,a)Fi12(b — a,a) + Fi—1,2(b — a,a) Fi 2(b — a, a).
Therefore (kK >0 and [ > 1):

Fro((b—a)Fi—12(b—a,a) + aFj2(b—a,a),(b—a)F2(b—a,a) + aFj412(b—a,a))

(5.3) =Fa(b—a,a)Frt12(b—a,a)+ Fi_12(b —a,a)Fg2(b—a,a)

which is equivalent to Theorem 5.17 when ag is replaced by b — a and when a; is
replaced by a. Besides, taking a = b =1 in the relation (5.3), using Theorem 1.27,
since Fy, 2(0,1) = F),, for all n > 0, we get (I > 0):

Fk,Q(F‘l,F‘l—&-l) = Fk-Ha vk 2 0

Definition 5.20. Let a,b,r be three numbers, let n > 0 be a natural number and
let | be a non-zero positive integer. The sequences (zni(a,b,7)), (Yni(a,b,7)) and
(2n,1(a,b,7)) are defined by (n > 0 and I > 1):

Tng11(a,b,1) = xpn1(a,b,7)Ci_1 2(n 1 (a, b, 1), yni(a, b, 1), 2 1(a, b, 7))
+ Yni(a,b,7)Cro(zn,1(a, b, 1), yni(a,b,1), 2ni(a,b,r))
Yn+1,1(a,0,7) = yn1(a,b,7)Ci1_1 2(Tn 1 (a, b, 1), Yni(a, b, 7), 2 1(a,b,7)) + (21 (a, b, )
+ yni(a, b, 1) + zni(a,b,7))Cra(xn,i(a, b,7), yni(a,b,7), 2 1(a,b,1))
Tnt1,1(a, b, 1) = 2n1(a, b, 7)(Ci=1 2(zn i (a, b, 1), yni(a, b, 1), 2n 1 (a, b, 7))
+ Cra(zn,i(a,b,7),yni(a,b,7), 2n1(a,b,1)))

and for [ > 1

zo,(a,b,7) = aCi_1 2(a,b,r) + bC 2(a,b,r)
yoi(a,b,7) =bCi_1 2(a,b,7) + (a + b+ 71)Ci2(a,b, )
z0,1(a,b,7) = r(Ci=12(a,b,7) + Cy2(a,b,1))

In the following, when there is no ambiguity and when it is possible, we will ab-
breviate the notations used for terms of sequences (z,,;(a,b,7)), (Yn,i(a,b,r)) and
(zn,1(a,b,7)). More precisely, if a,b,r don’t take particular values, then we will
substitute zp, 1, Yn,i, 2ng for zp,(a,b,7), yni(a,b,7), zn1(a,b,r) respectively. Thus,
the recurrence relations which define the sequences (z,,(a,b,7)), (yn,i(a,b,r)) and
(2n,1(a,b,7)) can be rewritten as (n > 0 and I > 1):

Tnt1,0 = Tn1Cro1,2(Tn 1, Yn i, Znt) + YniCl2(Tn,t, Yn,ts Zn,l)
Ynt+1,0 = Yn,iC1—1,2(@n1s Unis Znt) + (@Tng + Yni + 2n,0)Cr2(Tn i, Yn,is Znl)
Tn+1,1 = Zn,l(cl—1,2(mn,l7 Yn,ls Zn,l) + Cl,Z(:r'n,la Yn,ls Zn,l))-
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Proposition 5.21. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have

Cr2(Tnt1.0 Ynt1,0 Znt1,1) = Cro(@n i, Yni, 2n1) Crtr1,2(Tn iy Yn s Znl)
+ Ciz12(Tn 1, Ynits 2n,) Cr2 (@t Yn ity Znit)-

Proof. This proposition is a direct consequence of Definition 5.1, Definition 5.20
and Theorem 5.18. O

Proposition 5.22. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have (n >0 and 1> 1)

(Yn,t = Tn 1) (ZntYnt 1,0 = YniZns1,0) = (Tt + 20,0) (ZniTni1l — TniZngil)-
or equivalently (n >0 and 1 > 1)
Zn,l(xn,l+zn,l)xn+l,l+Zn,l($n,l—yn,l)yn+l,l_(xn,l($n,l+yn,l+zn,l)—yi,l)zn-i-l,l =0.

Proof. In the following, n denotes a natural number (n > 0) and [ denotes a
non-zero positive integer (I > 1). From Definition 5.20, we have (n > 0 and I > 1)

ZndTnt1,l — TniZnt1,] = Tn12n,0C1-1,2(Zn1 Yn,t, Zn,t) + YniZn1CrLo(@n.t, Yn.is Zn,1)

~Tn12n,001-1,2(Tn 1, Ynits Znt) — Tni2n 1 Cra (T, Ynts Zn,l)-

So
(5.4) Zn1%n410— Tt 2nt1,0 = Zni(Yni — Tnt)Cra(Tnts Ynis Znt), Y0 >0, VI>1
Moreover, we have (n > 0 and [ > 1):

Zn 1 Yn41,0 — YniZnt+1,0 = Yn,i12n,1C1—1,2(Tn.1, Yn,is Zn,1)
+ 2n,1(@n + Yng + 20,0)Cr.2(@nt, Yn is Zn,l)
= Yn,12n.1C1-1,2(Tn.1, Yn.i, Zn.1)

= Yn12n,1C12(Tnts Yn,i, Zn,t)-
So
(5.5) Zn¥Un+1,0 — YniZnt1,0 = 2nt(@nt + 201)Cro(@n,i, Ynt, 2ng) Y0 >0, VI>1
Taking (25,1 + 2n,1) (5.4) — (Yn,i — @n,1) (5.5) side by side, we get
(@ng + 2n,0) (Zna@nt10 = TniZna1) = Ynd = Tag) (ZndYnt1,0 — YnaZntin) =0
and so

(@ng + 2n,0) ZngTnt1,0 — Tont2n41,0) = YUnt — Tnt) (ZniYn+1.0 — Yn,iZn+1,1)-
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It proves the first part of Proposition 5.22. The second part of Proposition 5.22
follows from its first part. Indeed, from the first part of Proposition 5.22, we have
(n>0and>1)

(-Tn,l +Zn,l)zn,lfrn+1,l - (frn,l +Zn,l)xn,lzn+l,l - (yn,l _mn,l)zn,lyn+l,l - (yn,l _xn,l)yn,lzn+1,l
Zn,l(xn,l +Zn,l)xn+l,l +2n,1 (mn,l 7yn,l)yn+1,l - ((mn,l +Zn,l)xn,l + (xn,l 7yn,l)yn,l)zn+1,l =0
Zn,l(xn,l + Zn,l)xvz+1,l + Zn,l(-Tn,Z - yn,l)ynJrl,l - (xi,l + Zni%n,l + Tn,iYn,l — yrzz,l)szrl,l =0
21 (Tnt + 20,0 Tnt10 + 200 (Tt — Yn))Ynt 1,0 — (Tnt(Tog + 2ot + Ynt) — Y1) 2Zng1a = 0

It proves the second part of Proposition 5.22. O

Definition 5.23. Let K be a field. Let ! be a non-zero positive integer (I > 1).
The function Fj is defined on K3 by (I > 1 and (z,y, z) € K?)

E(xa Y, Z) = (mclfl,2($7 Y, Z) + ?JCl,2(33a Y, Z)a ylel,Q(ma Y, Z)
+ (.’E + Yy + Z)Cl,2(xv Y, Z)v Z(lel,Z(xv Y, Z) + Cl,Z(xv Y, Z)))

Remark 5.24. From Definition 5.20 and from Definition 5.23, we have (n > 0 and
[>1)
Fi(zni,Yni, 2nt) = (Tng1,0, Ynt1,0 Znt1,0)

So, from Proposition 5.21, we have

Cr2(Fi(@n1:Ynis 2n1)) = Cro(Tn iy Yn,is 2n,0) Crt1,2(Tn 1, Yn i, Znl)
+ Cro12(Tn1s Ynits 2n,0) Cr2(@nt, Yn oty Znit)-

Proposition 5.25. Let n > 0 be a natural number and let | be a non-zero positive
integer. We have (n >0 andl>1)

xn,l(l/Qv 1/27 _1/2) = yn,l(1/27 1/27 _1/2) = 1/2

2ni(1/2,1/2,-1/2) = —1/2.
In other words, (1/2,1/2,—1/2) is a fixved point of the function F} for alll > 1.

Proof. Let n > 0 be a natural number and let [ be a non-zero positive integer. Let
us prove Proposition 5.25 by induction on the integer n > 0 for all [ > 1. Using
Definition 5.1, we have

Coa(1/2,1/2,—1/2) = % - % - (-é) - %

Moreover, from Proposition 5.4, using the definition of the Fibonacci sequence,
we have (n > 2)

_Fn72+Fn71 1 B _Fn72+Fn71_Fn 1 1
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So

(5.6) Con(1/2,1/2,-1/2) = % Vn >0,

Using Definition 5.20 and using Equation (5.6), it gives (I > 1)

x07l(1/2, 1/2’ _1/2) — % * % N l1>< %1: %1’ 1 1
v01(1/2,1/2,-1/2) = £ x £+ 6[ D=
200(1/2,1/2,-1/2) = =1 (L + 5 _11

Hence, we verify that Proposition 5.25 is true for n = 0 and for all [ > 1. Let us
assume that Proposition 5.25 is true up to an integer n > 0 and for all [ > 1. Using
again Definition 5.20 and using Equation (5.6), we have (n > 0 and I > 1)

$n+1,l(1/2, 1/27*1/2) = 1% 2 1%+ % X %1: %7
Yna1,2(1/2,1/2,-1/2) = 1 x §1+ (ll +3 - 2) 3
Znt10(1/2,1/2,-1/2) = =% (3 + 3) = —3-

Thus, if Proposition 5.25 is true up to an integer n > 0, then Proposition 5.25 is
true for n + 1. Thus we have proved Proposition 1.33 by induction on the integer
n >0 for all [ > 1. Using Remark 5.24, we get (I > 1)

Fl(]-/2v 1/27 *1/2) = (1/27 1/27 71/2)

Therefore, (1/2,1/2,—1/2) is a fixed point of the function Fj for all I > 1. a
The results presented in this section can be further generalized to other class of

sequences. For one such aspect, the reader can refer to [3].

6. Some Results on Generalized Fibonacci Polynomial Sequences

In this section, we introduce some generalized Fibonacci polynomial sequences
and we give some properties about these polynomial sequences.

Definition 6.1. Let k be an integer which is greater than 2 and let ag,...,ar_1
be k numbers.
The polynomial sequence (Fyglli (agy...,ak—1;2)) in one indeterminate x is de-

fined by (k > 2)

Féwllz(ao, ey Qf—13X) = Féi)l’k(ao, ceyQp—1;2) + JiFr(Ll,)k_,k(ao, ceak—1;2), Vn >k
with

Fi(jf)(ao, . ,ak_1;$) = Qy;, Vie {0, ‘e ,k - 1}
The k-Fibonacci numbers sequence (F), x(ao,...,ar—1)) with initial conditions

ag,--.,ap—1 are obtained from this polynomial sequence by substituting = by 1
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in the sequence (Fflllz (ag,...,ak—1;2)). This polynomial sequence is called the k-
Fibonacci polynomial sequence of the first kind with initial conditions ag, ..., ar_1.
Case k = 2.

Table of the first polynomial terms of sequence (FT(LlQ) (0,1;2)).

Fi50,1:2) =0

F0,La) =1

FH0, L) =1

F?flz)(O, Liz)=1+x

FRO, L) =1+ 22

FY0.52) =143+

Fi5(0,152) = 1+ 4o + 322
Table of the first polynomial terms of sequence (F,S 5(1,0;))

FiY1,0:2) =1

FY(1,0;2) =0

FH(1,0;2) =2

F?EIQ)(I, 0;z) =x

F{9(1,0;2) = 2(z + 1)

F5(12)(1, 0;2) =22z + 1)

F6(712)(1, 0;2) =x(z? + 3z + 1)

Property 6.2. Let n be a non-zero positive integer. We have

25" k1
) e
FR0,152) = ( . )w’“
k=0
Ffllz)(l, 0;2) = acFT(Ll_)Lz(O7 1; ).

Proof. Let prove the first part of Property 6.2 by induction on the integer n > 0.

We have
0
1) N [(n—=1\ 4 n—k—1\ 4
FLQ(O,l,x)—l—( 0 )x —E ( & x.

k=0
Thus, we verify that the first part of Property 6.2 is true for n = 1. Let assume
that Property 6.2 is true up to an integer n > 0. Using Definition 6.1, we have

T(L}i-)l Z(Oa 1 3?) F(l)(oa 1; 35) + xF(l)l 2(Oa 1 33)

n,2
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Using the assumption, it gives:

L2 L2252
-k-1 k-2
Fs,i)l,z(oa Lix) = Z <n i )Ik + Z (n k )ka.
k=0 k=0

Taking the change of label k — m = k+1 in the second sum of the right hand side of
the previous equation, after renaming m by k, we have (recall that |x+1] = |z] +1,
Vz € R)

n—k— n—k—1
F£21,2(0a1§$): < )x +Z( ) ‘.
0

Or

if n=1 (mod2)

|+1 if n=0 (mod 2)
nl
If n is odd, then |%] = [25!] and we have

5]

-k-1
SIS 5 (Sl PN s G
k=1

Rearranging the different terms of this equation, it comes that (n odd)

5]
n—k—1 n—k—1
F£2172(0,1;x):1+2{( i )—l—( b1 )}xk
k=1

Using the combinatorial identity

(1 )-8

if n is odd, then we have

w3

W 3] n—k\ ,
Fn+1,2(07 1; 37) =1 + z
Ln+1 1J

%]

1-k-1
() ()
k=0 k=0

If n is even, then 2] = [251] 4+ 1 and we have

(1) L n—k—1 n—k—1 AN e A VY
ot 3 (75 (5 b (T e
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Using again the combinatorial identity
n—k—1 n n—k—1
k k-1

o I kY (L3 -
. — k n
FY 500, 12) =1+ Z( B >x +< ngz_l )xm.

k=1

(")

it gives

Using the definition of binomial coefficients, it can be shown that (k > 0)
n—k\ n-—k(n-k-1
k ok k-1 )’
2| %] if n=0 (mod 2),

23] +1 if n=1 (mod2).
In particular, when n is even, n = 2| % | and so n — [§] = [5]. Accordingly, we
have

()= Cat)

N 2, o 2]
Ful 0, 50) =1+ ) ( k )xk—'—( \_EJQ )xbj
h=1

2

If n is even, then we have

| 2=

%]
k=0

k=0

So, the first part of Property 6.2 is proved by induction on the integer n > 0.
Afterwards, let prove the second part of Property 6.2 by induction on the integer
n > 0. We have
F{Y(1,0;2) = 0= 2F{ 5 (0, 1;2).

Thus, we verify that the second part of Property 6.2 is true for n = 1. Let assume
that the second part of Property 6.2 is true up to an integer n > 0. Using Definition
6.1, we have

o (1,0:2) = F)(1,0:0) + 2FY, ,(1,0:2).
Using the assumption, it gives:

1 1 1 1
F,1,002) = 2(F)(0,152) + 2F ) ,(0,12)) = 2FY, (0,1 ).



Some Properties of Fibonacci Numbers 71

So, the second part of Property 6.2 is proved by induction on the integer n > 0. O
Property 6.3. The generating function of the polynomials F,§12) (0,1; ) is given by
o) S () y
F3700, Lz, y) = ;Fn,Q(Oa Lz)y" = T—y—zy?

where

y { 1 if =0

Y —1+/1F4z -
%ﬂ}ﬂ if x#0.

Proof. The generating function of the polynomials Ffllz)((), 1;x) is defined by

“+o0
FV(0,12,9) = > _FH(0, 132)y"
n=0

Since FéIQ) (0,1;2) = 0 and since F1(12) (0,1;x) = 1, we have

70, 1;2,y) ZF“ 0,1;2)y
:ZFT(I:-)L?(O’ 1)yt
n=0

+oo
=y+ > F 50, 1;2)y"

n=1

where in the sum over n, we performed the change of label n — m =n — 1 and we
renamed m by n. Using Definition 6.1, it gives

400
F0,12,) =y + Y (F0,152) + 2FY) 5(0,1;2))y"
n=1

Expanding the sum over n of the right hand side of the previous equation, it comes
that

3:(1)(071756 y _y+ZF7(112 ’ 7 n+1—|—$ZF(1)12 0,1,.13 n+1.

n=1

Or, performing again the change of label n — m = n — 1 in the second sum over n
of the right hand side of the previous equation, after renaming m by n, we have
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+oo “+o0
FU0,12,y) =y + Y F(0,1;2)y" + 2 F(0,1;2)ym

n=1 n=1

+o0 foo
=y +y Y F0, La)y" +ay®y FL20,152)ym.

n=1 n=1
Using the definition of the generating function ffél)(O, 1;2,y), we have
F50, 12,y) = y+yF (0, 152,y) + 22557 (0, 1.2, ).

Therefore

1 Y
FH(0,152,y) = fy——

where
7&{ 1 if =0,
Yy _1+/1¥4z .
% if x#0.

Property 6.4. Let ag, a1 be two integers. We have

Ff:z)(ao,al;x) = aOFfl’l?)(LO;x) + alF,(:Q)(O, 1;2), Vn >0,

F(l)(ao, ay;x) = aoxF£91,2(0, 1;2) + althlz) (0,1;2), Vn>1.

n,2

Proof. Let prove the first part of Property 6.4 by induction on the integer n > 0.

The second part of Property 6.4 follows from Property 6.2. Since Félz) (0,1;2) =0

and since F0(712)(1,O;x) =1, we have
Félz) (ag,a1;2) = ag = aoFé}Q)(l, 0;2) + alFé,lQ)(O7 1; x).

Thus, we verify that the first part of Property 6.4 is true for n = 0. Let assume
that the first part of Property 6.4 is true up to an integer n > 0. Using Definition
6.1, we have (n > 0)

1)

F,(Li)172(a0,a1; x) = FY(L 5(ag,ar;x) + foll_)LQ(ao,al; x).

)

Using the assumption, we have (n > 0)

Félﬁm(ao, ai; x) :aoFé’lQ)(l, 0;z) + alFT(l’lQ) (0,1;z)

+ 2(aFY, 5(1,0:2) + a1 FiY, 5(0,152)).
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Rearranging the different terms of the right hand side of the previous equation,
it gives (n > 0)

FY, (a0, ar;2) =ao(F(1,052) + 2FY, (1,0;2))

)

+a (F(0,1;2) + 2 FY, 5(0,1;2)).

Using Definition 6.1, we obtain (n > 0)

)y o(a0, aniw) = aoFy 5(1,0:2) + ar By, 5(0, 1),
So, the first part of Property 6.4 is proved by induction on the integer n. O

Remark 6.5. In particular, if ag = a; = 1, then using the recurrence relation of
the sequence (FT(LlQ) (0,1;2)) (see Definition 6.1), we obtain:

F, 1) = FY, 5(0,152), Vo >0,

Property 6.6. Let ag and a; be two numbers and let n be a positive integer. We
have (n>0)

ag + n(alf%)) ’Lf _ 1

on—1

F(l)(ao,al;x) =

n,2

(etgls i) o(o) + (2= ) 1 - @)™ if =#-1.

In particular, we have

ST if x= —%
FY0,1;2) =
’ )" —(1—p(x))"™
o( )24/;((9;)—@1( ) if x# _%
1271” if x——%

F(1,0:2) =

2" _(1—o(z))" ! .
x(s&'() O) ) if et

where

1+ +v1+4x

which verify

p(z)(p(z) — 1) = 2.

Proof. Property 6.6 can be proved easily by induction or in the same way as
Property 5.7. o
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Theorem 6.7. Let ag and ay be two numbers and let n and m be two positive
integers. If x # —i, then we have

F(l)(aoym;x)F(l}A2(%’@1, )+33F( )12(0&076117 )an)z(ao,alax)

n,2 m+1, 5
= (agp(z) — al)Qng_n,Q(O, 1;2) + ag(2a; — ag)p(x)™ "
Otherwise, we have
F (a0, ar; —1/4)F), 5(a0,ar; —1/4) + 2 FY) o (ao, ar; —1/4)FLD)y (ag, ar; —1/4)

_agm+n—2) agar(m+n—1) (m+n)a
2m+n+1 - 2m+n71 2m+n71 :

In particular, whatever x is, we have

F0,La)FY) 50, 12) + 2 FY (0, 152)FOL(0,152) = FLL (0,1 2)

Proof. Theorem 6.7 stems from Property 6.6. O
Case k = 3.
Table of the first polynomial terms of sequence (F}ng (0,0, 1;)).

Fi(0,0,1;2) =0
F0,0,1;2) =0
FiH0,0,12) =1
FiN0,0, 1) =1
F}0,0,1;2) =1
F0,0,1;2) =1+ 2
F0,0,1,2) =1+ 22
Félg(o 0,1;2) =1+ 3z
F(0,0,1,2) = 1+ 4z + 22

Property 6.8. Let n be a non-zero positive integer. For n > 2, we have (n > 2)

Ln72

k=0

and (n > 2)
F7§,132 (07 17 O,I) = ZEF7517)273(07O, 1,58)

Moreover, for n > 1, we have

F)(1,0,0;2) = eFY, (0,0, 1; ).

n—
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Proof. Property 6.8 can be proved in the same way as Property 6.2. O
Property 6.9. The generating function of the polynomials F( 32(0 0,1;x) is given
by
2
(1) . (1) Y
?3 (070,1,xy 7;).Z’T’n?)()(),:l.7x) w

where 1 —y — xy> # 0.
Proof. Property 6.9 can be proved in the same way as Property 6.3. O
Property 6.10. Let ag, a1, as be three integers. We have

FN (a0, a1, a9; ) = agFL3(1,0,0;2) +a1 FL5 (0,1, 0:2) +as FL (0,0, 1;2), ¥ > 0.

Proof. Property 6.10 can be proved in the same way as Property 6.4. O

Theorem 6.11. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. Forn > m — 1, we have

L=t

FD(0,...,0, 1) = > (n —(m —kl)(k + 1))xk,

k=0

Moreover, for n > 1, we have

FY(1,0,...,0) = 2FY

nm n—1m

(0,...,0,1;2)
and forn > with i € {2,...,m — 1} when m > 2, we have
FD(0,.00,0i0,1i1,0;,..., 032) = 2FD,(0,...,0,152)
where 0; means a; = 0 with 1 € {i — 2,1} and 1,1 means a;—1 =1 in
(1) D (A0y ey Q2 W1, Ay e ey Q15 ).
Proof. Theorem 6.11 can be proved in the same way as Property 6.2. o

Theorem 6.12. Let m be an integer which is greater than 2. The generating
function of the polynomials F,Slr)n (0,...,0,1;2) is given by
m—1
?g)(O,...,O,l;xy ZFl) ”70’1;x)yn:1—227—mym
where 1 —y — xy™ # 0.
Proof. Theorem 6.12 can be proved in the same way as Property 6.3. o

Theorem 6.13. Let m be an integer which is greater than 2 and let ag, a1, ..., am—1
be m integers. We have

F(l) D (a0, a1y .oy Qme1;x) = aOFé%(l,O,. ,0; )—|—a1F( ) (0,1,0,...,0;x)
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+oot am1 FL0,...,0,1;2), Vo >0.
Proof. Theorem 6.13 can be proved in the same way as Property 6.4. O

Definition 6.14. Let k be an integer which is greater than 2 and let ag, ..., ax—1 be

k numbers. The polynomial sequence (FT(LQ; (ag,.-.,ai—1;x)) in one indeterminate

z is defined by (k > 2)

Frs,?lz;(a07 s 7ak—1;x) = xFT(L%)Lk;(a'Ov s 7ak_1;$) + Fii)k’k(ao, s aak—l;x)v Vn>k

with

Fi(i)(ao7 ceap—1;x) =a;, Vi€ {0,...,k—1}.
The k-Fibonacci numbers sequence (F, k(ao,...,ar—1)) with initial conditions
ag,-..,ap_1 are obtained from this polynomial sequence by substituting x by
1 in the sequence (Ff,l(ao,...,ak,l;x)). This polynomial sequence is called
the k-Fibonacci polynomial sequence of the second kind with initial conditions
ag, ..., Ak—1-

Case k = 2.
Table of the first polynomial terms of sequence (F7§22) (0,1;2)).

F§2(0,1;2) =

F(0,132) =

F2(!2)(0,1;m) =z

F30,12) = 2% + 1
F30,1;2) = 2 + 20 = x(2® + 2)
F20,1;2) = 2* +32% + 1
F0,1;2) = 2° + 42° + 32

F(1,0;2) =1

F(1,0;2) =0

F(1,0,2) = 1

Féﬁz)(l,O;x) =z

F3)(1,0;2) = 2 + 1

FO)(1,052) = 2 + 20 = x(2® + 2)
F(1,0;2) = a* + 322 + 1

Property 6.15. Let n be an integer which is greater than 2. We have (n > 2)

[252]

— k-2
FA0,02)= " (" . >x”2k2

k=0
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and (n>0)
F20150) = 21 (1,05)

or (n>1)
F1(12—)1,2(05 Liz) = F?)

n,2

(1,0; ).

Proof. Let us prove the first part of Property 6.15 by induction on the integer
n > 2. We have

0
2—k—-2
F(1,0:2) =1 = Z( ¢ )xz_gk_g_
k=0

Thus, we verify that Property 6.15 is true for n = 2. Let assume that Property 6.15
is true up to an integer n > 2. Using Definition 6.14, we have (n > 1)

F®)\ o(1,0;2) = aF 3 (1,0;2) + FY, ,(1,0;2).
So, using the assumption, it comes that

2 g
F,(li)l’g(l,O;m): Z ( i >x"2k1+ Z ( k )x“2k3.
k=0

k=0

Performing the change of label k — m = k + 1, after renaming m by k, we have

1252 [25+]

— k-2 — k-2
RN TED S G PO R S (e
k=1

k=0
=7 n—k—2 L= n—k—2

_ . n—1 - h n—2k—1 - h n—=2k—1

=x +Z< i )a: —l—Z(k_l)x .
k=1 k=1

Or
n—1 |22 ] if n=0 (mod2),
m—1=

|22 +1 if n=1 (mod?2).

If n is even, then we have

9 . NI n—k—2 n—k—2 2
T (o f ty |

k=1

Using the combinatorial identity

()
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we obtain (n even)

If n is odd, then we have

Ln—2

. : n—k—2 n—k—2
-t SO ()
k=1

n—1
+(n - "= 2)$n2L”;1j1.

[25H) —1

Using again the combinatorial identity

SENCER RN

it gives (n odd)

and
2122/ +1 if n=0 (mod 2),
n—1=
212%51]  if n=1 (mod?2).

In particular, when n is odd, we have n—1 =2[ 231 | and son—[251] -1 = [ 251

Accordingly, we have

(-0
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So, if n is odd (n > 2), then we have

Ln 2

n— n—2k— I-n 1J " nol|_
Féi)12(10x—l‘ 1 Z( )m 2k1+( I_n 1J 2

= —k—-1
<’I’L L )xn—Qk—l
=1

L2z |52

z n—k—1 n—=2k—1 z n+1ik72 n+1—-2k—2
S e (e

k=0 k=0

:xn—l

So, the first part of Property 6.15 is proved by induction on the integer n > 2.
Let us prove the second part of Property 6.15 by induction on the integer n > 0.
We have

F20,1;2) =0 = F3(1,0;2).

Thus, we verify that the second part of Property 6.15 is true for n = 0. Let assume
that Property 6.15 is true up to an integer n > 0. Using Definition 6.14, we have
(n=>1)

FP,00,1;2) = 2F2(0,1;2) + F2), ,(0,1;2).

)

(
n
Using the assumption, it gives (n > 0)

F®,0,12) = 2F2, 5(1,052) + FLoa(1,0;2).

Using again Definition 6.14, we get (n > 0)
2 2
FT(LJr)l,z(Q Liz) = Fr(er)2,2(1’ 0; ).

So, the second part of Property 6.15 is proved by induction on the integer n > 0.
O

Property 6.16. The generating function of the polynomials Ffﬁ(l,();:c) 18 given

by
@ o @)y n L= ay
T2 (1L0iw,y) = Y F5(1L,00)y" = o
n=0 y—y
Va2 ia
wherey#%.

Proof. The generating function of the polynomials F,, (2 )(1 0;x) is defined by:

+oo
TP (1,0,,y) = Y F)(1,0,2)y"

n=0

79
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Since Fé?(l,();x) =1 and since Fl(?Q)(l,O; x) = 0, we have

+oo
T (1,0;2,y) =1+ Y F(1,0;2)y"

n=2

Using Definition 6.14, we have

“+oo
T (1L,052,y) =1+ > (@F) 5(1,0;2) + F, 5(1,052))y"

n=2

*1+xz Y o(1,0;2)y +ZF,§)221033)
n=2

Or

Z D o(1,0;2)y ZFMlom"+1

n=1

where we performed the change of label n — m = n — 1 and after we renamed m
by n. Moreover, we have

Z 221095 Z 210 y"t?

where we performed the change of label n — [ = n — 2 and after we renamed [ by
n. It results that

+oo “+oo
FO 1, 052,) =1 +ay > FO(L,0:2)y" + 2 Y F(1,0,2)y"

n=1 n=0

=1+ ay(F(1,0,2,9) — 1) + 4*F (1,0 2, ).

Therefore
1 -2y
TP (1,0,2,y) = ———
2 (7 axvy) 1-.’17y-y2

—r+Va?+4
Wh(ﬂMy#%. O

Property 6.17. Let ag, a1 be two integers. We have

F,S?%(ao,al; )—aOF(%(l 0; x)+a1F(2)(0,1,x) Vn >0,

Fz)(ao,al, )—aOF(z)(l 0; a:)—|—a1F(+)12(1 0;z), Vn>0.

n,2
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Proof. Let us prove the first part of Property 6.17 by induction on the integer n > 0.
The second part of Property 6.17 follows from Property 6.15. Since F0(22) (1,0;2) =1

and since FéQQ) (0,1;z) = 0, we have
Fé? (ap,a1;7) = ag = aoFé?Q)(l, 0;z) + alFé?Q) (0,1; z).
Thus, we verify that the first part of Property 6.17 is true for n = 0. Let us assume
that the first part of Property 6.17 is true up to an integer n > 0. Using Definition
6.14, we have
Fr(j-)l,2(a0’ ai;x) = xFT(L,QQ)(ao’ a;z) + F£2_)1,2(a0, a1;x).
Using the assumption, we have
Fr(fr)m(aOv a1; ) :x(aOFT(fQ)(l, 0;z) + alFfQ) (0,1;2))
+ a0F752_)1,2(1, 0;2) + CL1F7(12_)1,2(07 1; ).
Rearranging the different terms in the right hand side of the previous equation,
it gives
F) (a0, aisw) =ag(@F (1, 052) + Fy2, (1, 0;))
+ al(fof?) 0,1;2) + F7(12_)1)2(07 1;)).
Using again Definition 6.14, we get

F2)\ y(an, a1;2) = agFYY, 5(1,052) + a1 Fiy 5(0,1; ).

So, the first part of Property 6.17 is proved by induction on the integer n > 0. O

Property 6.18. Let ag and a1 be two numbers and let n be a positive integer. We
have (n >0)

- D (3)" if e =2,

na ()"
(7%(9220(52;@1) g(x)™ + (7‘13553:;1) (x —g(x)" if x# 2.

In particular, we have

F%)(ag, a;2) =

n (%)nil if x =421,
F2)0,1;2) =
9(93) 2;((;3)—791(93)) Zf €T 7& :|:2i,
(1-n) ()"  if z==+2i,
F2)(1,0;2) =

n—1_,_ n—1 . .
e R T
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where

which verify

We have also

9(2)* +1=g(2)2g(x) —x)  (z—g(2))* +1=—(z - g(2))(29(z) — 2).

Proof. Property 6.18 can be proved easily by induction or in the same way as
Property 5.7. O

Theorem 6.19. Let ag and ay be two numbers and let n and m be two positive
integers. If x # +2i, then we have

F\% (a0, ar;2)Fie)y 5(a0,a132) + B 5(ao, ar; 2) F g (ag, a1 )

= (agg(z) — al)Qng_n,g(O, 1;2) + ao(2a1 — agz)g(x)™ .

Otherwise, we have

F ) (ag, a1; 2)ES)y 5(a0, a152) + EL2) o (ag, ar; ) Fih (ag, ar; z)

€T m4+n+1
=(m+n—2)ad (§>

In particular, whatever x is, we have

m-+n m+n—1
—2(m+n—1agay (g) + (m +n)a? (g)

FO(0,12)FS), (0, 1i2) + 2F)) (0, 2)Flay(0, Liz) = E) (0, 1 2).

Proof. Theorem 6.19 stems from Property 6.18. O
Case k = 3.
Table of the first polynomial terms of sequence (F,(fg(l, 0,0;)).

)

Fi3)(1,0,0;2) = 1

F3)(1,0,0;2) =0

F{2)(1,0,0;2) = 0

F{2)(1,0,0;2) = 1

F{3)(1,0,0;2) =z

F5(723)(1,0,0;x) = 2

Fgg)(l,(),O;x) =1+23

F7(23)(17 0,0;2) = 2z + 2t = (2 + 23)
F{3)(1,0,0;2) = 322 + 2% = 22(3 + 2%)
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Property 6.20. Let n be an integer which is greater than 2. We have (n > 3)

1252

—2k—3
F)(1,0,0;2) = 3 <n ! )ankB

k=0

and (n>0)

FC)(0,0,1:2) = FC), 5(1,0,0;2) = F7, 5(0,1,0; ).

Proof. Property 6.20 can be proved in the same way as Property 6.15. a
Property 6.21. The generating function of the polynomials ng(l,(), 0; ) is given
by:

(2) N2 ) 1—ay
2 . _ 2 . n_ —
3:3 (170707$3y) - ;Fn,3(170707‘x)y - 1— xy — y3

where 1 — xy — y> # 0.

Proof. Property 6.21 can be proved in the same way as Property 6.16. O

Property 6.22. Let ag, a1, a2 be three integers. We have
F,fg(ao,al,ag;x) = aOF,S?g(l,O,O;x)+a1F,(L’2§(O, 1,0;x)+a2F,(L’22)(0,0, 1;2), Yn>0.

Theorem 6.23. Let m be an integer which is greater than 2 and let n be a non-zero
positive integer. For n > m, we have

Lnfnzj
m

Fy(fm(l, 0,...,0;2) = Z (n —(m —kl)k — m)xnm(kﬂ).

Moreover, for n >0, we have

F® .(1,0,...,0) = F®) (0,...,0,1;2)

)

and forn >0 with i € {2,...,m — 1} when m > 2, we have

(0,...,0i—2,1;_1,04,...,0;2) = F® (0,...,0,1; )

)

where 0; means a; = 0 with | € {i —2,i} and 1,1 means a;—1 =1 in
2
FP) (ag, .. @Gi2,ai—1,04, .., Qm1; ).

n,m

Proof. Theorem 6.23 can be proved in the same way as Property 6.15. a

83
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Theorem 6.24. Let m be an integer which is greater than 2. The generating
)

function of the polynomials Fq(fm(l, 0,...,0;x) is given by
1 -2y

where 1 —xy — y™ # 0.
Proof. Theorem 6.24 can be proved in the same way as Property 6.3. O

Theorem 6.25. Let m be an integer which is greater than 2 and let ag,ay, ..., Qm—1
be m integers. We have

F(Q) ) (a0, a1y oy Qo1 2) = aoF,(L,Q%l(l,O, oo 052) + alFé’Q%l(O, 1,0,...,0;2)

+oit am1F3,0,...,0,1;2), Vo >0.
Proof. Theorem 6.25 can be proved in the same way as Property 6.4. O
The results presented in this section can be related to other class of sequences
as in [4].
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