KYUNGPOOK Math. J. 57(2017), 125-132 https://doi.org/10.5666/KMJ.2017.57.1.125 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Spectrally Bounded Higher Derivations Mapping into the Jacobson Radical

YONG-SOO JUNG Department of Mathematics Sun Moon University, Asan, Chungnam 336-708, Republic of Korea e-mail: ysjung@sunmoon.ac.kr

ABSTRACT. We obtain commutativity-free characterizations of higher derivations on a unital Banach algebra that map into its Jacobson radical. We also investigate the spectral boundedness of generalized higher derivations.

1. Introduction

Throughout, let A be an algebra over the complex field. A *derivation* is an additive mapping $\delta : A \to A$ satisfying the Leibniz rule $\delta(xy) = x\delta(y) + \delta(x)y$ for all $x, y \in A$.

Let A and B be Banach algebras. A linear mapping $\alpha : A \to B$ is called *spectrally bounded* if there is $M \ge 0$ such that $r(\alpha(x)) \le Mr(x)$ for all $x \in A$. If $r(\alpha(x)) = r(x)$ for all $x \in A$, we say that α is a *spectral isometry*. If r(x) = 0, then x is called *quasinilpotent*. (Herein, $r(x) = \lim_{n \to \infty} ||x^n||^{\frac{1}{n}}$ denotes the *spectral radius* of $x \in A$).

One of principal results concerning derivations in Banach algebra theory is the classical Singer-Wermer theorem [6] which states that every continuous derivation on a commutative Banach algebra maps into the Jacobson radical rad(A). In the same paper they conjectured that the assumption of continuity is not necessary and M. P. Thomas [7] proved the conjecture.

Now the problem concerning derivations on Banach algebras belongs to the noncommutative setting which states that a (possibly discontinuous) derivation δ on a (possibly noncommutative) Banach algebra A such that the commutator $\delta(x)x - x\delta(x)$ belongs to rad(A) for all $x \in A$, maps A into its Jacobson radical. Equivalently, every derivation on A leaves primitive ideals of A invariant, which is called the *noncommutative Singer-Wermer conjecture*. But the question whether

Received January 26, 2015; accepted September 5, 2016.

²⁰¹⁰ Mathematics Subject Classification: 46H99, 47B47, 16N60.

Key words and phrases: higher derivation, generalized higher derivation, spectrally bounded, Jacobson radical.

this is true, is still an open problem. There are various partial answers of the noncommutative Singer-Wermer conjecture, for example, Brešar and Mathieu proved that every spectrally bounded derivation on a unital Banach algebra maps into the radical [2, Theorem 2.5].

Let \mathbb{N} be the set of the natural numbers. For $m \in \mathbb{N}$, a sequence $H = \{h_1, \dots, h_m\}$ (resp., $H = \{h_1, \dots, h_n, \dots\}$) of linear mappings on an algebra A is called a *higher derivation* of rank m (resp. infinite rank) on A if the functional equation

$$h_n(xy) = \sum_{i=0}^n h_i(x)h_{n-i}(y).$$

holds for each $n = 1, 2, \dots, m$ (resp. $n \in \mathbb{N}$) and for all $x, y \in A$, where h_0 is an identity mapping on A. We say that a higher derivation H of rank m (resp. infinite rank) on A maps into its Jacobson radical rad(A), denoted by $H(A) \subseteq rad(A)$ if $h_n(A) \subseteq rad(A)$ for each $n = 1, 2, \dots, m$ (resp. $n \in \mathbb{N}$). Note that a higher derivation of rank 1 is just a derivation.

A sequence $G = \{g_1, \dots, g_m\}$ (resp. $G = \{g_1, \dots, g_n, \dots\}$) of linear mappings on a Banach algebra A is *spectrally bounded* on A if g_n is spectrally bounded on Afor each $n = 1, 2, \dots, m$ (resp. $n \in \mathbb{N}$).

R.J. Roy [5] and N.P. Jewell [3] showed that the continuity of derivations on semisimple Banach algebras can be extended to higher derivations. K.-W. Jun and Y.-W. Lee [4] generalized the Singer-Wermer theorem to higher derivations of any rank: every higher derivation of any rank which is continuous on a commutative Banach algebra, maps into its Jacobson radical.

In this note, using the arguments in [2], we extend Brešar and Mathieu's results [2] to higher derivations, that is, we obtain commutativity-free characterizations of higher derivations on a unital Banach algebra that map into its Jacobson radical. We also investigate the spectral boundedness of generalized higher derivations.

2. Main Results

Theorem 2.1. Let $H = \{h_n\}$ be a higher derivation of any rank on a unital Banach algebra A. Then $H(A) \subseteq rad(A)$ if and only if H is spectrally bounded on A.

Proof. One way implication is obvious. Conversely, we suppose that H is a spectrally bounded higher derivation of any rank on A. By induction, we prove that $h_n(A) \subseteq rad(A)$ for all $n \in \mathbb{N}$. Since h_1 is a spectrally bounded derivation on A, we see that $h_1(A) \subseteq rad(A)$ from [2, Theorem 2.5]. Now we assume that $h_n(A) \subseteq rad(A)$ for $1 \leq n \leq k-1$. Let $\pi : A \to A/rad(A)$ be the canonical epimorphism which is spectrally isometry. Then for each $x \in A$, each $y \in rad(A)$

and each $k \in \mathbb{N}$, we get

$$r(xh_{k}(y)) = r\left(h_{k}(xy) - h_{k}(x)y - \sum_{i=1}^{k-1} h_{i}(x)h_{k-i}(y)\right)$$

= $r\left(\pi\left(h_{k}(xy) - h_{k}(x)y - \sum_{i=1}^{k-1} h_{i}(x)h_{k-i}(y)\right)\right)$
= $r(\pi(h_{k}(xy)))$
= $r(h_{k}(xy)) \le M_{k}r(xy) = 0$

for some $M_k > 0$. Therefore, we obtain that $h_k(rad(A)) \subseteq rad(A)$. Let us define a mapping \tilde{h}_k on a unital semisimple Banach algebra A/rad(A) by $\tilde{h}_k(x+rad(A)) = h_k(x) + rad(A)$ for all $x \in A$. Then \tilde{h}_k becomes a derivation on A/rad(A) since $h_n(A) \subseteq rad(A)$ for $1 \leq n \leq k-1$. By the hypothesis, since h_k is spectrally bounded on A, we see that \tilde{h}_k also is spectrally bounded on A/rad(A). That is, \tilde{h}_k is a spectrally bounded derivation on A/rad(A). Therefore it follows from [2, Theorem 2.5] that $\tilde{h}_k = 0$ on A/rad(A). This yields that $h_k(A) \subseteq rad(A)$. The proof of theorem is complete.

Theorem 2.2. Let $H = \{h_n\}$ be a higher derivation of any rank on a unital Banach algebra A with unit e. Then $H(A) \subseteq rad(A)$ if and only if for each $n \in \mathbb{N}$, $\sup\{r(x^{-1}h_n(x)) : x \in A \text{ invertible}\} < \infty$.

Proof. Let $s_n = \sup\{r(x^{-1}h_n(x)) : x \in A \text{ invertible}\}$ for each $n \in \mathbb{N}$ and let $\pi : A \to A/rad(A)$ be the canonical epimorphism. If H is a higher derivation of any rank on A such that $H(A) \subseteq rad(A)$, then $s_n = 0$ for each $n \in \mathbb{N}$. Suppose conversely that $s_n < \infty$ for each $n \in \mathbb{N}$. As in the proof of Theorem 2.1, it needs to prove that $h_n(A) \subseteq rad(A)$ for all $n \in \mathbb{N}$. We use the induction. Since h_1 is a derivation on A and $s_1 < \infty$, we see, by [2, Theorem 2.6], that $h_1(A) \subseteq rad(A)$. Assume that $h_n(A) \subseteq rad(A)$ for $1 \le n \le k-1$. It needs to show that $h_k(rad(A)) \subseteq rad(A)$. Given $x \in rad(A)$, we have $(e + x)^{-1} = e - x(e + x)^{-1} \in e + rad(A)$ and so, considering $h_n(e) = 0$ for all $n \in \mathbb{N}$,

$$r((e+x)^{-1}h_k(e+x)) = r((e-x(e+x)^{-1})h_k(x))$$

= $r(h_k(x) - x(e+x)^{-1}h_k(x))$
= $r(\pi(h_k(x) - x(e+x)^{-1}h_k(x)))$
= $r(\pi(h_k(x)))$
= $r(h_k(x)).$

From the assumption, it follows that $r(h_k(x)) \leq s_k < \infty$ for all $x \in rad(A)$. This yields $r(h_k(x)) = 0$ for all $x \in rad(A)$. Consequently, for each $x \in A$ and each $y \in rad(A)$, we get

$$r(xh_{k}(y)) = r\left(h_{k}(xy) - h_{k}(x)y - \sum_{i=1}^{k-1} h_{i}(x)h_{k-i}(y)\right)$$

= $r\left(\pi\left(h_{k}(xy) - h_{k}(x)y - \sum_{i=1}^{k-1} h_{i}(x)h_{k-i}(y)\right)\right)$
= $r(\pi(h_{k}(xy)))$
= $r(h_{k}(xy)) = 0.$

Therefore, we see that $h_k(rad(A)) \subseteq rad(A)$, as claimed. Define a mapping \tilde{h}_k on a unital semisimple Banach algebra A/rad(A) by $\tilde{h}_k(x + rad(A)) = h_k(x) + rad(A)$ for all $x \in A$. Then \tilde{h}_k becomes a derivation on A/rad(A) since $h_n(A) \subseteq rad(A)$ for $0 \leq n \leq k - 1$. Since

$$\sup\{r((x+rad(A)))^{-1}h_k(x+rad(A))): x \in A \text{ invertible}\} = s_k < \infty,$$

it follows from [2, Theorem 2.6] that $\tilde{h}_k = 0$ on A/rad(A). Hence we have $h_k(A) \subseteq rad(A)$. This complete the proof.

An additive mapping $\varphi : A \to A$ is called a *left multiplier* if $\varphi(xy) = \varphi(x)y$ holds for all $x, y \in A$. In [1], M. Brešar defined the following concept. Let $\delta : A \to A$ be a derivation. An additive mapping $f : A \to A$ is called a *generalized derivation* associated with δ if $f(xy) = x\delta(y) + f(x)y$ holds for all $x, y \in A$. This notion is a generalization of both derivations and multipliers. Note that $f = L_a + \delta$ on a unital Banach algebra with unit e, where L_a is a left multiplication by a = f(e) and that f need not map into the Jacobson radical [2]. M. Brešar and M. Mathieu [2] proved that the following conditions are equivalent on a unital Banach algebra.

- (i) f is spectrally bounded.
- (ii) Both L_a and δ are spectrally bounded.

Here we consider the extended concepts of generalized derivations and left multipliers, respectively.

Let A be a Banach algebra, $m \in \mathbb{N}$ and $H = \{h_1, \dots, h_m\}$ (resp. $H = \{h_1, \dots, h_n, \dots\}$) a higher derivation of rank m (resp. infinite rank) on A. A sequence $F = \{f_1, \dots, f_m\}$ (resp. $F = \{f_1, \dots, f_n, \dots\}$) of linear mappings on A is said to be a *generalized higher derivation* of rank m (resp. infinite rank) on A associated with H if the functional equation

$$f_n(xy) = \sum_{i=0}^n f_i(x)h_{n-i}(y)$$

holds for all $x, y \in A$, where f_0 and h_0 are identity mappings on A. Of course, a generalized higher derivation of rank 1 is a generalized derivation on A.

Also, let $G = \{g_1, \dots, g_m\}$ (resp. $G = \{g_1, \dots, g_n, \dots\}$) be a sequence of mappings on A. A sequence $\Phi = \{\varphi_1, \dots, \varphi_m\}$ (resp. $\Phi = \{\varphi_1, \dots, \varphi_n, \dots\}$) of linear mappings on A is called a *higher left multiplier* of rank m (resp. infinite rank) on A associated with G if the functional equation

$$\varphi_n(xy) = \sum_{i=0}^n \varphi_i(x) g_{n-i}(y)$$

is valid for all $x, y \in A$, where $\varphi_0 = 0$ on A and g_0 is an identity mapping on A. A higher left multiplier of rank 1 is just a left multiplier on A.

Lemma 2.3. Let $H = \{h_n\}$ be a higher derivation of any rank on a unital Banach algebra A with unit e. A sequence $F = \{f_n\}$ is a generalized higher derivation of the same rank with H on A associated with H if and only if there exists a higher left multiplier $\Phi = \{\varphi_n\}$ of the same rank with H on A associated with H on A.

Proof. Suppose that $F = \{f_n\}$ be a generalized higher derivation of the same rank with H on A associated with H. Then

$$f_n(xy) = \sum_{i=0}^n f_i(x)h_{n-i}(y)$$

holds for all $x, y \in A$, where f_0 and h_0 are identity mappings on A. First, we see that $\varphi_1 = f_1 - h_1$, where $\varphi_1 = L_a$ is a left multiplication by $a = f_1(e)$. Put $\varphi_n = f_n - h_n$ for all $n \ge 2$. Then for each $n \ge 2$, φ_n is a linear mapping on A and we have

$$\begin{split} \varphi_n(xy) &= f_n(xy) - h_n(xy) \\ &= \sum_{i=0}^n f_i(x) h_{n-i}(y) - \sum_{i=0}^n h_i(x) h_{n-i}(y) \\ &= \sum_{i=0}^n [f_i(x) - h_i(x)] h_{n-i}(y) \\ &= \sum_{i=0}^n \varphi_i(x) h_{n-i}(y). \end{split}$$

for all $x, y \in A$. Therefore $\Phi = \{\varphi_n\}$ is a higher left multiplier associated with H and $f_n = \varphi_n + h_n$ for all $n \in \mathbb{N}$.

Conversely, let $\Phi = \{\varphi_n\}$ be a higher left multiplier of the same rank with H on A associated with H. Since $f_1 = \varphi_1 + h_1$, where $\varphi_1 = L_a$ is a left multiplication by $a = f_1(e)$, we assume that $f_n = \varphi_n + h_n$ for all $n \ge 2$. Then for each $n \in \mathbb{N}$, f_n

is a linear mapping on A and we get

$$f_n(xy) = \varphi_n(xy) + h_n(xy)$$

= $\sum_{i=0}^n \varphi_i(x)h_{n-i}(y) + \sum_{i=0}^n h_i(x)h_{n-i}(y)$
= $\sum_{i=0}^n [\varphi_i(x) + h_i(x)]h_{n-i}(y)$
= $\sum_{i=0}^n f_i(x)h_{n-i}(y)$

for all $x, y \in A$. Thus $F = \{f_n\}$ is a generalized higher derivation on A associated with H.

Lemma 2.4. Let $H = \{h_n\}$ be a higher derivation of any rank on a unital Banach algebra A with unit e. Suppose that $F = \{f_n\}$ is a spectrally bounded generalized higher derivation of the same rank with H on A associated with H. Then F leaves the Jacobson radical invariant, that is, $f_n(rad(A)) \subseteq rad(A)$ for each $n \in \mathbb{N}$.

Proof. Suppose that F is spectrally bounded on A. Let $\Phi = \{\varphi_n\}$ be a higher left multiplier of the same rank with H on A associated with H, where $\varphi_1 = L_a$ is a left multiplication with $a = f_1(e)$. Then it follows from Lemma 2.3 that $f_n = \varphi_n + h_n$ for all $n \in \mathbb{N}$. By [2, Lemma 2.7], we have $f_1(rad(A)) \subseteq rad(A)$ and so $h_1(rad(A)) \subseteq rad(A)$.

Assume that $h_n(rad(A)) \subseteq rad(A)$ for $1 \leq n \leq k-1$. Then for each $x \in rad(A)$, we obtain that

$$\varphi_n(x) = \sum_{i=0}^n \varphi_i(e) h_{n-i}(x) \in rad(A),$$

whence $\varphi_n(rad(A)) \subseteq rad(A)$. Therefore for each $x \in rad(A)$, we get

$$\varphi_k(x) = \sum_{i=0}^k \varphi_i(e) h_{k-i}(x) = \sum_{i=0}^{k-1} \varphi_i(e) h_{k-i}(x) + \varphi_k(e) x \in rad(A),$$

which yields that $\varphi_k(rad(A)) \subseteq rad(A)$.

Since f_k is spectrally bounded, we have for each $x \in rad(A)$,

$$r(h_{k}(x)y) = r\left(h_{n}(xy) - \sum_{i=0}^{k-1} h_{i}(x)h_{k-i}(y)\right)$$

= $r\left(\pi\left(h_{k}(xy) - \sum_{i=0}^{k-1} h_{i}(x)h_{k-i}(y)\right)\right)$
= $r(\pi(h_{k}(xy))) = r(h_{k}(xy))$
= $r(f_{k}(xy) - \varphi_{k}(xy))$
= $r(\pi(f_{k}(xy) - \varphi_{k}(xy)))$
= $r(\pi(f_{k}(xy))) = r(f_{k}(xy)) \le M_{k}r(xy) = 0$

130

for some $M_k > 0$ and all $y \in A$. Thus we see that

$$h_k(rad(A)) \subseteq rad(A).$$

The induction means that

$$\varphi_n(rad(A)) \subseteq rad(A)$$
 and $h_n(rad(A)) \subseteq rad(A)$

for all $n \in \mathbb{N}$.

Since $f_n = \varphi_n + h_n$, it follows that

$$f_n(rad(A)) \subseteq rad(A)$$

for all $n \in \mathbb{N}$ which is a conclusion.

As our final result, we extend [2, Theorem 2.8] to higher generalized derivations.

Theorem 2.5. Let $H = \{h_n\}$ a higher derivation of any rank on a unital Banach algebra A with unit e. Suppose that $F = \{f_n\}$ is a generalized higher derivation of the same rank with H on A associated with H and that $\Phi = \{\varphi_n\}$ is a higher left multiplier of the same rank with H on A associated with H, where $\varphi_1 = L_a$ is a left multiplication by $a = f_1(e)$. The following conditions are equivalent.

- (a) F is spectrally bounded on A.
- (b) Both Φ and H are spectrally bounded on A.

Proof. (b) \Rightarrow (a) By Theorem 2.1, we have $H(A) \subseteq rad(A)$ and hence for each $n \in \mathbb{N}$,

$$r(f_n(x)) = r(\varphi_n(x) + h_n(x))$$
$$= r(\pi(\varphi_n(x) + h_n(x)))$$
$$= r(\pi(\varphi_n(x)))$$
$$= r(\varphi_n(x)) \le M_n r(x)$$

for some $M_n > 0$ and all $x \in A$. Therefore, F is spectrally bounded on A.

(a) \Rightarrow (b) From Theorem 2.1, it suffices to show that H is spectrally bounded, i.e., $H(A) \subseteq rad(A)$. For then, $H(A) \subseteq rad(A)$ and for each $n \in \mathbb{N}$, $r(\varphi_n(x)) = r(f_n(x))$ for all $x \in A$ yield that φ_n is spectrally bounded with the same constant with f_n , that is, Φ is spectrally bounded.

Since f_1 is spectrally bounded, it follows from [2, Theorem 2.8] that h_1 is spectrally bounded which implies that $h_1(A) \subseteq rad(A)$. Assume that $h_n(A) \subseteq rad(A)$ for $1 \leq n \leq k-1$ and so $h_n(rad(A)) \subseteq rad(A)$. As in the proof of Lemma 2.4, we see that $h_k(rad(A)) \subseteq rad(A)$. Then a mapping $\tilde{h}_k : A/rad(A) \to A/rad(A)$ defined by $\tilde{h}_k(x + rad(A)) = h_k(x) + rad(A)$ for all $x \in A$ becomes a derivation on a unital semisimple Banach algebra A/rad(A) because $h_n(A) \subseteq rad(A)$ for $1 \leq n \leq k-1$.

Yong-Soo Jung

Since $f_k(rad(A)) \subseteq rad(A)$ by Lemma 2.4, we define a mapping \tilde{f}_k : $A/rad(A) \to A/rad(A)$ by $\tilde{f}_k(x + rad(A)) = f_k(x) + rad(A)$ for all $x \in A$. Since $h_n(A) \subseteq rad(A)$ for $1 \leq n \leq k-1$, it follows that \tilde{f}_k is a generalized derivation on A/rad(A) associated to \tilde{h}_k and $\tilde{f}_k = L_{\tilde{a}_k} + \tilde{h}_k$, where $\tilde{a}_k = \tilde{f}_k(e + rad(A))$. The fact that $r(\pi(z)) = r(z)$ for all $z \in A$ and f_k is spectrally bounded on A, tells us that \tilde{f}_k is a spectrally bounded on A/rad(A). From [2, Theorem 2.8], we now see that \tilde{h}_k is a spectrally bounded derivation on A/rad(A). In view of Theorem 2.1, we obtain that $\tilde{h}_k = 0$ on A/rad(A). This means that $h_k(A) \subseteq rad(A)$. Consequently, $h_n(A) \subseteq rad(A)$ for all $n \in \mathbb{N}$ by induction which completes the proof. \Box

References

- M. Brešar, On the distance of the compositions of two derivations to the generalized derivations, Glasgow Math. J., 33(1991), 89–93.
- [2] M. Brešar and M. Mathieu, Derivations mapping into the radical, III, J. Func. Anal., 133(1995), 21–29.
- [3] N. P. Jewell, Continuity of module and higher derivations, Pacific J. Math., 68(1977), 91–98.
- [4] K. -W. Jun and Y. -W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc., 33(1996), 229–233.
- [5] R. J. Roy, A class of topological algebras of formal power series, Carleton Mathematical Series, No. 11, November (1969).
- [6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann., 129(1955), 260-264.
- [7] M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math., 128(2)(1988), 435–460.