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Abstract. If a virtual knot diagram can be transformed to another virtual one by a finite
sequence of crossing changes, Reidemeister moves and virtual moves then the two virtual
knot diagrams are said to be homotopic. There are infinitely many homotopy classes of
virtual knot diagrams.

We give necessary conditions by using polynomial invariants of virtual knots for two

virtual knots to be homotopic. For a sequence S of crossing changes, Reidemeister moves

and virtual moves between two homotopic virtual knot diagrams, we give a lower bound

for the number of crossing changes in S by using the affine index polynomial introduced

in [13]. In [10], the first author gave the q-polynomial of a virtual knot diagram to find

Reidemeister moves of virtually isotopic virtual knot diagrams. We find how to apply

Reidemeister moves by using the q-polynomial to show homotopy of two virtual knot

diagrams.

1. Introduction

Any classical knot diagram can be unknotted by a sequence of Reidemeister
moves and crossing changes. So crossing change is called an unknotting operation
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for classical knot diagrams. There was an open question whether one can get the
minimal number of crossing changes from a knot diagram with a minimal crossing
number to get the trivial knot diagram. For this question S. Bleiler [1] and Y.
Nakanishi [19] gave a counterexample C(5, 1, 4) in Conway notation in Figure 1.
Crossing change is no more an unknotting operation for virtual knot diagrams. Two
virtual knot diagrams are homotopic if there is a sequence of Reidemeister moves,
virtual moves and crossing changes. We will give necessary conditions for two given
virtual knot diagrams to be homotopic. To show homotopy of virtual knot diagrams,
we investigate how to apply crossing changes by using an affine index polynomial
PK(t) of a virtual knot diagram K and how to apply Reidemeister moves by using
a polynomial qK(t) of a virtual knot diagram K.

Figure 1: A knot C(5, 1, 4).

In 1996 L. H. Kauffman introduced virtual knots which generalize classical knots
[12]. A virtual knot diagram is a knot diagram allowed to have virtual crossings.
We denote a virtual crossing by an encircled crossing as shown in Figure 2.

Figure 2: A virtual knot diagram.

If a knot K is isotopic to another knot K ′ then there is a sequence of moves from
a diagram of K to a diagram of K ′ as shown in Figure 3. These moves are called
Reidemeister moves. The moves of diagrams shown in Figure 4 are called virtual
moves. Two virtual knot diagrams K1 and K2 are said to be virtually isotopic if
there is a sequence of Reidemeister moves and virtual moves from K1 to K2. A
virtual knot is defined to be the virtual isotopy class of a virtual knot diagram.

From now on all virtual knot diagrams are assumed to be oriented. We define
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Figure 3: Reidemeister moves.

Figure 4: Virtual moves.

the sign sgn(c) of a crossing c of a virtual knot diagram as shown in Figure 5. The
writhe w(K) of a virtual knot diagram K is defined to be the sum of signs of all
crossings of K.

1+ 1-

Figure 5: The sign of a crossing.

M. Goussarov, M. Polyak and O. Viro defined finite type invariants of virtual
knots and gave some combinatorial representations of finite type invariants of low
degree by using Gauss diagrams [6]. The Gauss diagram of a virtual knot diagram
K is an oriented circle with chords corresponding to crossings. The two endpoints
of a chord correspond to the preimages of the crossing of K. A chord corresponding
to a crossing c is oriented from the preimage of the over crossing point of c to the
preimage of the under crossing point of c. A chord is assumed to have the sign
of the crossing corresponding to the chord. See Figure 6. We denote the Gauss
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diagram of K by G(K).
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Figure 6: A Gauss diagram of a virtual knot diagram.

A virtual knot can be represented as a Gauss diagram and vice versa [6, 12]. For
a Gauss diagram G, there are many virtual knot diagrams whose Gauss diagrams
are the same G. All these virtual knot diagrams are virtually isotopic [6]. In Gauss
diagrams, the Reidemeister moves can be described as a sequence of moves shown
in Figure 7 [6, 21]. In the figure ε denotes the sign of a chord which can be either
+ or −.
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Figure 7: Moves of Gauss diagrams.

A local move of virtual knot diagrams shown in Figure 8 is called a crossing
change or a CC-move. Two virtual knot diagrams are said to be homotopic if they
are related by a sequence of CC-moves, Reidemeister moves, and virtual moves. If
two virtual knot diagrams K1 and K2 are homotopic then the Gordian distance
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Figure 8: A crossing change.

dG(K1,K2) between K1 and K2 is defined to be the minimal number of CC-moves
needed to transform K1 to K2, up to Reidemeister moves and virtual moves. Al-
though any two classical knot diagrams are homotopic, we will see that there are
infinitely many non-homotopic pairs of virtual knot diagrams.

A. Kawauchi gave a condition on a pair of the Alexander polynomials of knots
which are realizable by a pair of knots with Gordian distance one [15]. He showed
that there are infinitely many mutually disjoint infinite subsets of the set of the
Alexander polynomials of knots such that every pair of distinct polynomials in each
subset is not realizable by any pair of knots with Gordian distance one [15]. Y.
Miyazawa gave several evaluations of the Gordian distance of two classical knots by
using the HOMFLY polynomial, the Jones polynomial and the Q-polynomial [18].
Similarly to the classical case, we can extend virtual knot diagrams to virtual link
diagrams with multiple components naturally [12]. Two virtual link diagrams are
said to be welded equivalent if one can be transformed to the other by a sequence of
Reidemeister moves, virtual moves and the upper forbidden move shown in Figure 9.
Two welded link diagrams are said to be homotopic if one can be transformed to the
other by a sequence of Reidemeister moves, virtual moves and self crossing changes.
H. A. Dye and L. H. Kauffman extended Milnor’s µ and µ̄ invariants to welded and
virtual links [5]. Both the upper forbidden move and the lower forbidden move in
Figure 9 are called forbidden moves which unknot all virtual knots [8, 14, 20]. A ∆-
move is a local move of virtual knot diagrams as shown in Figure 10. T. Kanenobu
showed that a ∆-move can be realized by a finite sequence of the Reidemeister
moves, the virtual moves and the forbidden moves [14]. The first author showed
that the values of a Vassiliev invariant of degree 2 for two virtual knots related by
a ∆-move differ by 48 [9].

The upper forbidden move. The lower forbidden move.

Figure 9: Forbidden moves.

A. Henrich defined a polynomial invariant of virtual knots by using weight of a
crossing. Z. Cheng [2] introduced an odd writhe polynomial fK(t) of virtual knots



150 M.-J. Jeong, C.-Y. Park and M. S. Park

Figure 10: A ∆-move.

K considering the Gauss diagram of a virtual knot and coloring of arcs. Z. Cheng
and H. Gao [3] generalized the odd writhe polynomial to a sequence of polynomials
from which Henrich’s polynomial can be recovered. L. H. Kauffman introduced the
affine index polynomial of a virtual knot based on a Cheng coloring of a virtual
knot diagram [13]. An affine index polynomial PK(t) is given in the form

PK(t) =
∑
c

sgn(c)(tWK(c) − 1),

where sgn(c) and WK(c) are the sign and the weight of a crossing c respectively.
We will show that PK2(t) − PK1(t) = ±(tn + t−n − 2) for some integer n if K2 is
obtained from K1 by applying a CC-move.

The first author defined a polynomial qK(t) of a virtual knot diagram K in [10].
If K1 and K2 are related by a second Reidemeister move then qK2

(t)− qK1
(t) = ±1

or 0. If K1 and K2 are related by a third Reidemeister move then qK2
(t)− qK1

(t) =
±(tα+β − tα − tβ) for some α, β ∈ Z. To show that two virtual knot diagrams
K1 and K2 are homotopic, basically we find a sequence of CC-moves, Reidemeister
moves and virtual moves between K1 and K2. The affine index polynomial and
q-polynomial can shed light on finding such a sequence.

In Section 2, we give a sequence of virtual knots every pair of which is non-
homotopic and give necessary condition for two virtual knot diagrams to be homo-
topic by using the affine index polynomial. Moreover we give a lower bound for the
number of CC-moves needed to transform a virtual knot diagram to a homotopic
one by comparing their affine index polynomials. In Section 3, we give a relation-
ship between qK1

(t) and qK2
(t) if K1 and K2 differ by a CC-move. When two

virtual knot diagrams K1 and K2 are homotopic, their Gauss diagrams are related
by the moves corresponding to CC-moves and Reidemeister moves. qK(t) is defined
from the Gauss diagram of K and it is sensitive to Reidemeister moves. So we can
predict how virtual knot diagrams K1 and K2 are related by Reidemeister moves
by comparing qK1(t) and qK2(t) if K1 and K2 are virtually isotopic. We can map
out a sequence of Reidemeister moves and CC-moves from K1 to K2 by using the
affine index polynomial and the q-polynomial for homotopic virtual knot diagrams
K1 and K2. We give an example illustrating that PK(t) and qK(t) are useful to
show that two virtual knot diagrams are homotopic.
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2. Polynomial Invariants and CC-moves of Virtual Knot Diagrams

Y. Miyazawa found a 2-variable polynomial invariant of virtual links [16] and
generalized it by constructing a multi-variable polynomial invariant of virtual links
[17]. He gave a lower bound on the virtual crossing number by using the multi-
variable polynomial.

H. A. Dye and L. H. Kauffman defined the arrow polynomial of a virtual link
which is a generalization of the bracket polynomial [4]. By normalizing the arrow
polynomial we get an invariant of virtual knots and links. By changing variables
suitably, we may get the normalized arrow polynomial from the Miyazawa’s multi-
variable polynomial and vice versa. By using the normalized arrow polynomial we
will get a necessary condition for two given virtual knot diagrams to be homotopic.

Definition 2.1. The arrow polynomial of a virtual link diagram is defined by using
the following relations.

(1) 〈L+〉 = A〈L0〉+ A−1〈L∞〉 and
〈L−〉 = A−1〈L0〉 + A〈L∞〉, where L+, L−, L0, and L∞ are virtual link
diagrams which differ as shown in Figure 11 and A is an indeterminate.

(2) 〈C1〉 = 〈C2〉 and 〈C3〉 = 〈C4〉, where C1, C2, C3 and C4 are virtual link
diagrams which differ as shown in Figure 12.

(3) 〈O〉 = 1 and 〈L ∪ Om〉 = (−A2 − A−2)Xm〈L〉, where Xm’s are indetermi-
nates, O is the trivial knot diagram with no crossings and no poles and Om
is the diagram with 2m poles as shown in Figure 12.

L
+

L
− 0

L L
∞

Figure 11:

The arrow polynomial is invariant under Reidemeister moves and virtual moves
except for the first Reidemeister moves [4]. Similarly to the bracket polynomial
we can normalize the arrow polynomial to get an invariant of virtual links. The
normalized arrow polynomial 〈L〉NA is defined by the formula

〈L〉NA = (−A3)−w(L)〈L〉.

The arrow polynomial and normalized arrow polynomial take values in the polyno-
mial ring Z[A,A−1, X1, X2, · · · ].
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Figure 12:

The first and second authors defined polar link diagrams, a generalization of
virtual link diagrams, and extended the normalized arrow polynomial to polar link
diagrams. We gave the following lemma, which is useful to see whether two virtual
knot diagrams are homotopic or not [11].

Lemma 2.2.([11]) If L and L′ are homotopic polar link diagrams then

〈L〉NA ≡ 〈L′〉NA mod A4 − 1.

In particular, if two virtual knot diagrams K and K ′ are homotopic then their
normalized arrow polynomials 〈K〉NA and 〈K ′〉NA are congruent modulo A4 − 1.
In the following example, we show that there are infinitely many homotopy classes
of virtual knot diagrams.

Example 2.3. Consider a sequence of virtual knot diagrams {Kn}∞n=0 as shown in
Figure 13. Inductively we can show that the degree of X1 of 〈Kn〉NA modulo A4−1
is n. Therefore any two virtual knot diagrams in the sequence are not homotopic
by Lemma 2.2.

⋯

0
K

1
K

2
K

Figure 13: A sequence of virtual knot diagrams with distinct homotopy
classes.

A flat crossing is an intersecting line segments with no information about over
and under strand. A flat virtual knot diagram is a virtual knot diagram whose
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crossings are replaced with flat crossings. From a virtual knot diagram K we get a
flat virtual knot diagram F (K) by taking its shadow of K. Figure 14 shows a flat
virtual knot diagram with two flat crossings.

Figure 14: A flat virtual knot.

By replacing crossings in Reidemeister moves and virtual moves with flat cross-
ings, we get flat Reidemeister moves and flat virtual moves respectively. A sequence
of flat Reidemeister moves and flat virtual moves is called a flat virtual isotopy. A
flat virtual knot is defined as the flat virtual isotopy class of a flat virtual knot
diagram.

Let K be a virtual knot diagram. Then F (K) can be regarded as a 4-regular
graph G by considering a flat crossing as a vertex. An arc of F (K) is an edge of
G that it represents. Label each arc of F (K) with an integer so that it satisfies
the rule in Figure 15. L. H. Kauffman proved that such labeling exists always [13].
Such labeling of arcs for a flat virtual knot diagram is called a Cheng coloring. See
Figure 16.

Let c be a flat crossing of a labeled flat virtual knot diagram. If arcs near c is
labeled as shown in the left part of Figure 15, then we define W+(c) = m − n − 1
and W−(c) = n−m+ 1. W+(c) and W−(c) are independent of Cheng colorings of
F (K) [3, 13].

1m −1n +

nm

m

m

n

n

c

Figure 15: Labeling of arcs.

For each crossing c of K, there is a corresponding flat crossing c′ in F (K).
If F (K) is labeled as previously described, then define WK(c) = Wsgn(c)(c

′). For
simplicity sake we often denote WK(c) by W (c). We denote the set of all crossings
of K by C(K). The affine index polynomial PK(t) of K is defined by the equation

PK(t) =
∑

c∈C(K)

sgn(c)(tWK(c) − 1).
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Figure 16: A Cheng coloring.

L. H. Kauffman showed that PK(t) is an invariant of virtual knots [13]. For exam-
ple the affine index polynomial of a virtual knot diagram D in Figure 16 can be
calculated as following

PD(t) = sgn(c1)(tWK(c1) − 1) + sgn(c2)(tWK(c2) − 1) + sgn(c3)(tWK(c3) − 1)

= −t− t−1 + 2.

We give a necessary condition for two given virtual knot diagrams K1 and K2 to
be homotopic by using the affine index polynomials of K1 and K2.

Lemma 2.4. Let K1 be a virtual knot diagram and c1 ∈ C(K1). If K2 is the virtual
knot diagram obtained from K1 by changing the crossing c1 then

PK2(t)− PK1(t) = −sgn(c1)(tWsgn(c1)(c1) + t−Wsgn(c1)(c1) − 2).

Proof. Assume that a crossing c1 of K1 is changed to a crossing c2 of K2 by the
CC-move. Since F (K1) = F (K2), sgn(c1) = −sgn(c2) and W+(c) = −W−(c), we
see that

PK2(t)− PK1(t) = sgn(c2)(tWsgn(c2)(c2) − 1)− sgn(c1)(tWsgn(c1)(c1) − 1)

= −sgn(c1)(tWsgn(c1)(c1) + t−Wsgn(c1)(c1) − 2). 2

Now we see that PK2
(t) − PK1

(t) = ±(t−n + tn − 2) for some integer n if two
virtual knot diagrams K1 and K2 are related by a single CC-move. Moreover Either
n or −n is the weight of the crossing which was changed by the CC-move. Therefore
we get the following

Theorem 2.5. Let K1 and K2 be homotopic virtual knot diagrams. Then

PK1
(t)− PK1

(t−1) = PK2
(t)− PK2

(t−1).

Moreover

dG(K1,K2) ≥
m∑
i=1

|ai|,
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where PK2
(t)− PK1

(t) =
∑m
i=1 ai(t

−i + ti − 2).

Example 2.6. Let {Kn}∞n=0 be a sequence of virtual knot diagrams as shown in
Figure 17. We can easily see that PKn

(t) = −n(t−1 + t1 − 2) for each n = 0, 1, · · · .
Therefore dG(Kn, O) ≥ n by Theorem 2.5, where O is the trivial virtual knot
diagram. Since Kn can be transformed to O by changing n crossings, we see that
dG(Kn, O) = n.

0
K

1
K

2
K

⋯

Figure 17:

3. CC-moves and Reidemeister Moves

If two virtual knot diagrams K1 and K2 are supposed to be homotopic, then
we usually want to find a sequence of Reidemeister moves, virtual moves and CC-
moves. This can be done through their Gauss diagrams. In Gauss diagrams we need
not to consider virtual moves by its definition. So we are interested in finding a
sequence of Reidemeister moves and CC-moves in a Gauss diagrammatic approach.
The affine index polynomial gives us information on CC-moves but it does not give
us any information about Reidemeister moves as it is an invariant. In this section
we find how to apply Reidemeister moves to show homotopy of K1 and K2 by using
q-polynomials.

A q-polynomial qK(t) of a virtual knot diagram K is defined to study Rei-
demeister moves [10]. It is invariant under the first Reidemeister move but not
invariant under the second Reidemeister move and the third Reidemeister move. It
is defined by using mixed pairs of crossings of a virtual knot diagram and degrees
of its crossings. In [10], the first author defined the degree deg(c) of a crossing c
by using Gauss diagram. A Cheng coloring of a virtual knot diagram K can be
represented in a Gauss diagram [3] and we can see that deg(c) = −W (c) for any
crossing c. Refer [3, 10] for more details.

Let K be a virtual knot diagram with crossings c1 and c2. If the two chords
corresponding to c1 and c2 appear as shown in Figure 18, then the ordered pair
(c1, c2) is called a mixed pair of crossings. For example the knot in Figure 6 has
two mixed pairs (c1, c3), (c2, c1) of crossings.

Denote the set of all mixed pairs of crossings of K by M(K). The two chords
of a Gauss diagram G(K) corresponding to crossings c1 and c2 of K intersect if
(c1, c2) ∈M(K).
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1
c

2
c

Figure 18:

Let c be a crossing of a virtual knot diagram K. For simplicity sake we will
denote the chord of the Gauss diagram G(K) corresponding to the crossing c by c.
For a chord c of a Gauss diagram, assume that we walk on the chord c from the
starting point of c to the ending point of c. Let r+ and r− be the numbers of positive
chords and negative chords from left to right respectively and let l+ and l− be the
numbers of positive chords and negative chords from right to left respectively. We
define the degree deg(c) of a crossing c by the equation

deg(c) = r+ − r− − l+ + l−.

For c1, c2 ∈ C(K) we also define deg(c1, c2) by the formula

deg(c1, c2) = deg(c1)− deg(c2).

For example, if c1, c2, c3 and c4 are crossings of a virtual knot diagram whose Gauss
diagrams are as shown in Figure 19, then deg(c1) = 1, deg(c2) = 0, deg(c3) = −2,
deg(c4) = 1, deg(c1, c2) = 1, deg(c2, c3) = 2 and deg(c3, c4) = −3.

+

−

+
1
c

2
c

3
c

4
c

+

Figure 19:

Now we define a polynomial qK(t) associated to K by the equation

qK(t) =
∑

(c1,c2)∈M(K)

sgn(c1)sgn(c2)tdeg(c1,c2).

Lemma 3.1.([10]) Let K1 and K2 be related by a second Reidemeister move and
their Gauss diagrams be as shown in Figure 20. Then

qK1
(t)− qK2

(t) = −1.
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Figure 20:

Lemma 3.2.([10]) Let K1 and K2 be related by a second Reidemeister move and
their Gauss diagrams be as shown in Figure 21. Then

qK1
(t) = qK2

(t).

ε ε− 

1
c 2
c

2
( )G K

1
( )G K

Figure 21:

Lemma 3.3.([10]) Let two virtual knot diagrams K1 and K2 be related by a third
Reidemeister move. Then there exist α, β ∈ Z such that

qK1
(t)− qK2

(t) = ±(tα+β − tα − tβ).

Let K1 and K2 be virtual knot diagrams related by a third Reidemeister move
and c1, c2, c3 be the crossings of K1 involved with the third Reidemeister move.
Then α, β and α + β are given in the form deg(ci) − deg(cj) for some distinct
elements i, j of the set {1, 2, 3} [10].

Let K1 and K2 be virtually isotopic virtual knot diagrams. Then there exists
a sequence S of Reidemeister moves transforming K1 to K2. We denote the num-
bers of the first Reidemeister moves, the second Reidemeister moves and the third
Reidemeister moves in the sequence S by n1(S), n2(S) and n3(S) respectively. A
lower bound for n1(S) is the difference |w(K1)− w(K2)| of writhes of K1 and K2.
By using Lemma 3.1, Lemma 3.2 and Lemma 3.3, we get the following theorems for
the numbers of the second Reidemeister moves and the third Reidemeister moves
in S.
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Theorem 3.4.([10]) Let K1 and K2 be two virtually isotopic virtual knot diagrams
and S be a sequence of Reidemeister moves deforming K1 to K2. Let gK(t) =

qK(t)− qK(1) and gK1
(t)− gK2

(t) =
∑l
i=m ai(t

i − 1). Then we get inequalities

n3(S) ≥
∑l
i=m |ai|

3
and n3(S) ≥

∣∣∣∣∣
l∑

i=m

ai

∣∣∣∣∣ .
Theorem 3.5.([10]) Let K1 and K2 be two virtually isotopic knot diagrams and S
be a sequence of Reidemeister moves deforming K1 to K2. Let qK1(t) − qK2(t) =∑l
i=m ait

i. Then we get an inequality

n2(S) + 3n3(S) ≥
l∑

i=m

|ai|.

There are four versions of second Reidemeister moves for oriented virtual knot
diagrams as shown in Figure 22. For the numbers of second Reidemeister moves
and third Reidemeister moves, C. Hayashi introduced cowrithe of a knot which can
be given as qK(1) and gave the following theorem.

Theorem 3.6.([7]) Let K be a virtual knot diagram. The first Reidemeister move
does not change qK(1). The second Reidemeister moves Ω2a and Ω2b change qK(1)
by ±1. The second Reidemeister moves Ω2c and Ω2d do not change qK(1). The
third Reidemeister move changes qK(1) by ±1.

2aΩ 2bΩ 2cΩ 2dΩ

Figure 22: The second Reidemeister moves.

Let K1 and K2 be related by a CC-move. Assume that a crossing c1 ∈ C(K1)
is changed to c2 ∈ C(K2) by the CC-move. Let

qK1
(t) =

∑
(c,c′)∈M(K1)

sgn(c)sgn(c′)tdeg(c,c
′) = g(t) + tdeg(c1)h(t) + t−deg(c1)i(t),

where g(t), h(t) and i(t) come from the sums for c, c′ 6= c1, for c = c1 and for
c′ = c1 respectively. Note that if (c1, c

′) ∈M(K1) then (c′, c2) ∈M(K2). Similarly,
if (c, c1) ∈M(K1) then (c2, c) ∈M(K2). Since sgn(c2) = −sgn(c1) we have

qK2
(t) = g(t)− tdeg(c1)h(t−1)− t−deg(c1)i(t−1).

Now we get the following
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Lemma 3.7. Let K2 be a virtual knot diagram obtained from K1 by changing a
crossing c1 of K1. Let h(t) = t−deg(c1)

∑
(c1,c′)∈M(K1)

tdeg(c1,c
′) and

i(t) = tdeg(c1)
∑

(c,c1)∈M(K1)
tdeg(c,c1). Then

qK2(t)− qK1(t) = −tdeg(c1)(h(t) + h(t−1))− t−deg(c1)(i(t) + i(t−1)).

Note that the coefficients of tk and t−k are the same for h(t) + h(t−1) and
i(t) + i(t−1) for all k = 1, 2, · · · .

Example 3.8. Let K1 and K2 be the virtual knot diagrams as shown in Figure
23. Since PK1(t) = t−2 + t−1 − 4 + t + t2 and PK2(t) = t−1 − 2 + t, we have

1
K

2
K

1
c

2
c

Figure 23:

PK2(t) − PK1(t) = −t−2 + 2 − t2. If K1 and K2 are homotopic then we need at
least 1 CC-move which changes a crossing of K1 with weight ±2 and with sign +
by Theorem 2.5. There are two crossings c1 and c2 in K1 with weight ±2 and with
sign +. If we change the crossing c1 then we get a diagram K3 in Figure 24. Since
qK3

(t) = t−3 − t−1 − 1 and qK2
(t) = t−2, we have qK2

(t)− qK3
(t) = −t−3 + t−2 +

t−1 + 1. By Theorem 3.4 we see that we need a third Reidemeister move at least

1
K 2

K

CC-move

3
K

4
K

Figure 24:

once. By Theorem 3.5, we also see that we need another third Reidemeister move
or a second Reidemeister move. By comparing w(K3) and w(K2), we see that we
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may not need a first Reidemeister move. By applying a third Reidemeister move to
K3 we get K4 as shown in Figure 24. Now qK4

(t) = t−2−1 and qK2
(t)−qK4

(t) = 1.
From Lemma 3.1, we see that K4 may be transformed to K2 by a suitable second
Reidemeister move. Actually we get K1 by applying a second Reidemeister move
to K4 as shown in Figure 24.
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