DOI QR코드

DOI QR Code

Physiological Responses of Green Roof Plants to Drought Stress

건조스트레스에 따른 옥상녹화 식물의 생리적 반응

  • Park, Seong-Sik (Major in Horticulture, Graduate School, Chungbuk National University) ;
  • Choi, Jaehyuck (Dept. of Horticultural Science, Chungbuk National University) ;
  • Park, Bong-Ju (Dept. of Horticultural Science, Chungbuk National University)
  • Received : 2017.02.17
  • Accepted : 2017.03.15
  • Published : 2017.04.30

Abstract

This study evaluated the drought tolerance of Liriope platyphylla F.T.Wang & T.Tang, Dendranthema zawadskii var. lucidum (Nakai) J.H.Park, Hosta longipes (Franch. & Sav.) Matsum., Sedum sarmentosum Bunge and Zoysia japonica Steud. for an extensive green roof. In order to assess drought tolerance of green roof plants, several criteria were measured such as volumetric water content, leaf and soil moisture potential, chlorophyll a and b, chlorophyll fluorescence, photosynthesis, stomatal conductance, transpiration rate and antioxidants. The results of the drought tolerance measurement of green roof plants focused on the gradually withering of plants from lack of volumetric water content. D. zawadskii was the first to show an initial wilting point, followed by Z. japonica, H. longipes and L. platyphylla in order while S. sarmentosum showed no withering. It was concluded that H. longipes, L. platyphylla and S. sarmentosum were highly drought tolerant plants able to survive over three weeks. Furthermore, chlorophyll a and b were divided into two types: Type I, which kept regular content from the beginning to the middle of the period and suddenly declined, like H. longipes and Z. japonica; and Type II, which showed low content at the beginning, sharply increased at the middle stage and decreased, like D. zawadskii, L. platyphylla and S. sarmentosum. Volumetric water content and the amount of evapotranspiration consistently declined in all plant species. The analysis of chlorophyll fluorescence results that S. sarmentosum, which had relatively high drought tolerance, was the last to decline, while Z. japonica and S. sarmentosum withered after rapid reduction. At first, photosynthesis, stomatal conductance and transpiration rate showed high activity, but they lowered as the plant body closed stomata owing to the decrease in volumetric water content. Measuring antioxidants showed that when drought stress increased, the amount of antioxidants grew as well. However, when high moisture stress was maintained, this compound was continuously consumed. Therefore, the variation of antioxidants was considered possible for use as one of the indicators of drought tolerance evaluation.

본 연구는 저관리 경량형 옥상녹화를 위해 맥문동, 울릉국화, 비비추, 돌나물, 잔디의 내건성을 평가하였다. 옥상녹화 식물의 내건성 평가를 위해 용적수분함량, 엽과 토양의 수분포텐셜, 엽록소 a와 b함량, 엽록소형광, 광합성율, 기공전도도, 증산속도, 항산화물질을 측정하였다. 옥상녹화 식물의 내건성 측정결과, 무관수 일수가 경과하면서 용적수분함량 부족에 따라 식물은 점차 고사하는 경향을 보였다. 울릉국화가 가장 먼저 고사하였으며, 그 다음으로 잔디, 비비추, 맥문동 순이었으며, 돌나물은 고사하지 않았다. 비비추, 맥문동, 돌나물은 3주 이상 생존하여 내건성이 높은 식물로 판단되었다. 엽록소 a와 b는 두 가지 유형이 나타났는데, 초기부터 중기까지 일정한 함량을 유지 후, 급격히 감소하는 I유형에는 비비추, 잔디와 초기에는 낮은 함량을 보이다가 중기 때 급격히 증가 후, 감소하는 II유형에는 울릉국화, 맥문동, 돌나물로 구분되었다. 용적수분함량과 증발산량은 모든 식물 종에서 지속적으로 감소하였으며, 엽록소형광 측정결과, 내건성이 상대적으로 높은 돌나물이 가장 늦게 감소하였고, 잔디와 돌나물은 급격한 감소가 나타난 후 고사하였다. 광합성, 기공전도도, 증산속도는 초기에 높은 활성도가 나타났으나, 용적수분함량의 감소로 인하여 식물체가 기공을 닫아 낮아지는 경향을 보였다. 항산화물질 측정결과, 건조스트레스가 증가하면 항산화물질의 양 또한 증가하나, 높은 스트레스가 유지되면 이러한 화합물이 지속적으로 소비되므로, 항산화물질의 증감은 내건성 평가 지표로 사용할 수 있을 것으로 판단된다.

Keywords

References

  1. An, D. H., Y. T. Kim, D. J. Kim and J. S. Lee(2008) The effects of water stress on $C_3$ plant and CAM plant. Korean J. Environ. Biol. 26: 271-278.
  2. Bousselot, J. M., J. E. Klett and R. D. Koski(2011) Moisture content of extensive green roof substrate and growth response of 15 temperate plant species during dry down. HortScience 46: 518-522.
  3. Chandra, A., R. K. Bhatt and L. P. Misra(1998) Effect of water stress on biochemical and physiological characteristics of oat genotypes. J. Agron. Crop Sci. 181: 45-48. https://doi.org/10.1111/j.1439-037X.1998.tb00396.x
  4. Chen, F., S. Chen, W. Fang and J. Liu(2001) Determining heat tolerance for Chrysanthemum vestitum and four Ch. morifolium cultivars with small flowers. Acta Agric. Shanghai 17:80-82.
  5. Cooper, C. S. and M. Qualls(1967) Morphology and chlorophyll content of shade and sun leaves of two legumes. Crop Sci. 7: 672-673. https://doi.org/10.2135/cropsci1967.0011183X000700060036x
  6. Durhman, A. K., D. B. Rowe and C. L. Rugh(2006) Effect of watering regimen on chlorophyll fluorescence and growth of selected green roof plant taxa. HortScience 41: 1623-1628.
  7. Durhman, A. K., D. B. Rowe and C. L. Rugh(2007) Effect of substrate depth on initial growth, coverage, and survival of 25 succulent green roof plant taxa. HortScience 42: 588-595.
  8. Egert, M. and M. Tevini(2002) Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives (Allium schoenoprasum). Environ. Exp. Bot. 48: 43-49. https://doi.org/10.1016/S0098-8472(02)00008-4
  9. Emilsson, T. U. and K. Rolf(2005) Comparison of establishment methods for extensive green roofs in southern Sweden. Urban For. Urban Greening 3: 103-111. https://doi.org/10.1016/j.ufug.2004.07.001
  10. Getter, K. L. and D. B. Rowe(2007) Effect of substrate depth and planting season on Sedum plug survival on green roofs. J. Environ. Hortic. 25: 95-99.
  11. Huh, K. Y., I. H. Kim and H. C. Kang(2003) Effects of artificial substrate type, soil depth, and drainage type on the growth of Sedum sarmentosum grown in a shallow green rooftop system. J. Korean Inst. Inter. Landscape Archit. 31(2): 102-112.
  12. Hsiao, T. C.(1973) Plant responses to water stress, Annu. Rev. Plant Physiol. 24: 519-570. https://doi.org/10.1146/annurev.pp.24.060173.002511
  13. Johnson, J. D., R. Tognetti and P. Paris(2002) Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric $CO_2$. Physiol. Plant. 115: 93-100. https://doi.org/10.1034/j.1399-3054.2002.1150111.x
  14. Jung, H. S.(2008) Plant-growth and Weed Occurrence in an Extensive Green Rooftop System. Master's Thesis, Sungkunkwan University, Seoul, Korea.
  15. Kim, S. C., H. J. Lee and B. J. Park(2012) Heat budget analysis of light thin layer green roof planted with Zoysia japonica. J. Korean Inst. Landscape Archit. 40(6): 190-197. https://doi.org/10.9715/KILA.2012.40.6.190
  16. Kim, S. C. and B. J. Park(2013) Assessment of temperature reduction and heat budget of extensive modular green roof system. Korean J. Hortic. Sci. Technol. 31: 503-511. https://doi.org/10.7235/hort.2013.13001
  17. Kramer, P. J. and J. S. Boyer(1995) Water Relations of Plants and Soils. Academic Press.
  18. Lee, S. T., J. M. Park, H. K. Lee, M. B. Kim, J. S. Cho and J. S. Heo(2000) Component comparison in different growth stages and organ of Saururus chinensis Baill. Korean J. Med. Crop Sci. 8(4): 312-318.
  19. Lee, Y. M.(2013) Analyzing the Centrality of Korean Cities using Land Price. Master's Thesis. Kungpook Natl. University, Daegu, Korea.
  20. Lichtenthaler, H. K.(1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148: 350-382.
  21. Lim, J. H., S. Y. Woo, M. J. Kwon, J. H. Chun and J. H. Shin(2006) Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. J. Korean For. Soc. 95: 705-710.
  22. Lim, Y. J.(2012) Photosynthesis and Photoprotective Mechanisms of Environmental Stressed Plant. Ph.D. Dissertation, Kyungpook Natl. University, Daegu, Korea.
  23. Miller, C.(2003) Moisture management in green roofs. Proc. 1st Greening Rooftops Sustainable Communities Conf. 1: 177-182.
  24. Million, J., T. Yeager and C. Larsen(2007) Water use and fertilizer response of azalea using several no-leach irrigation methods. Hort-Technology 17: 21-25.
  25. Moran, M. S., T. R. Clarke, Y. Inoue and A. Vidal(1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 49: 246-263. https://doi.org/10.1016/0034-4257(94)90020-5
  26. Mori, I. C., S. Utsugi, S. Tanakamaru, A. Tani, T. Enomoto and M. Katsuhara(2009) Biomarkers of green roof vegetation: Anthocyanin and chlorophyll as stress marker pigments for plant stresses of roof environments. Sustainable Environ. Res. 19: 21-27.
  27. Nagase, A and N. Dunnett(2010) Drought tolerance in different vegetation types for extensive green roofs: Effects of watering and diversity. Landscape Urban Plann. 97: 318-327. https://doi.org/10.1016/j.landurbplan.2010.07.005
  28. NFRI.(1990) Manuals of quality characteristic analysis for food quality evaluation. Natl. Food Res. Inst.
  29. Park, S. S., S. C. Kim, S. Y. Hwang and B. J. Park(2015) Effect of temperature reduction of extensive green roofs. Flower Res. J. 23: 19-24. https://doi.org/10.11623/frj.2015.23.1.6
  30. Park, S. S., J. H. Choi and B. J. Park(2016) Assessment of plant drought tolerance for extensive green roof. Korea J. Org. Agric. 24: 789-795.
  31. Park, Y. M.(2013) Characteristic of matter allocation of Calystegia soldanella under water stress. J. Environ. Sci. Int. 22(2): 187-193. https://doi.org/10.5322/JESI.2013.22.2.187
  32. Price, A. H., J. E. Cairns, P. Horton, H. G. Jones and H. Griffiths (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. J. Exp. Bot. 53: 989-1004. https://doi.org/10.1093/jexbot/53.371.989
  33. Seel, W. E., G. A. F. Hendry and J. A. Lee(1992) Effect of desiccation on some activated oxygen processing enzymes and antioxidants in mosses. J. Exp. Bot. 43: 1031-1037. https://doi.org/10.1093/jxb/43.8.1031
  34. Shearman, R. C. and J. B. Beard(1972) Stomatal density and distribution in Agrostis as influenced by species, cultivar, and leaf blade surface and position. Crop Sci. 12: 822-823. https://doi.org/10.2135/cropsci1972.0011183X001200060031x
  35. Tevini, M., W. Iwanzik and A. H. Teramura(1983) Effects of UV-B radiation on plants during mild water stress II. Effects on growth, protein and flavonoid content. Z. Pflanzenphysiol. 110: 459-467. https://doi.org/10.1016/S0044-328X(83)80197-4
  36. Thuring, C. E., R. D. Berghage, and D. J. Beattie(2010) Green roof plant responses to different substrate types and depths under various drought conditions. HortTechnology 20: 395-401.
  37. VanWoert, N. D., D. B. Rowe, J. A. Andresen, C. L. Rugh and L. Xiao(2005) Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40: 659-664.
  38. Velioglu, Y. S., G. Mazza, L. Gao and B. D. Oomah(1998) Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113-4117. https://doi.org/10.1021/jf9801973
  39. von Willert, D. J., B. M. Eller, M. J. A. Werger and E. Brinckmann (1990) Desert succulents and their life strategies. Vegetatio 90: 133-143. https://doi.org/10.1007/BF00033023
  40. Wolf, D. and J. T. Lundholm(2008) Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 33: 179-186. https://doi.org/10.1016/j.ecoleng.2008.02.008
  41. Yoon, P. S., J. H. Lee and B. Y. Ryu(2007) Study on the plants adaptation of rooftop garden. J. Korean Soc. People Plants Environ. 10(2): 1-7.
  42. Zhang J. and H. Y. Li(2012) Study on drought resistance of Sedum in extensive green roofs. World Automation Congr. p.1-3.
  43. Zhang, J. and M. B. Kirkham(1996) Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci. 113: 139-147. https://doi.org/10.1016/0168-9452(95)04295-4