DOI QR코드

DOI QR Code

Design of Tank Velocity Based on Multi-Mode Natural Frequencies for Suppression of Sloshing

다모드 고유 진동수를 고려한 슬로싱 억제용 용기 속도의 설계

  • Sim, Taegwon (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology) ;
  • Kim, Dongjoo (Dept. of Mechanical Engineering, Kumoh Nat'l Institute of Technology)
  • 심태권 (금오공과대학교 기계공학과) ;
  • 김동주 (금오공과대학교 기계공학과)
  • Received : 2016.09.22
  • Accepted : 2017.02.13
  • Published : 2017.05.01

Abstract

Suppression of sloshing is essential to achieve fast transportation and stable maneuvering of tanks partially filled with liquid. In this study, numerical simulations are performed to investigate the effects of the acceleration magnitude and the acceleration duration of triangular velocity profiles on sloshing when a rectangular tank moves horizontally. We previously reported, based on only the first natural mode, that sloshing is significantly suppressed when the acceleration duration equals the first natural period of sloshing. On the other hand, the present CFD simulations find the best acceleration duration for minimum sloshing and explains the results considering higher modes as well as the first mode. We also perform the analysis using an equivalent model based on masses and springs, and evaluate its accuracy by comparing it with the CFD simulation results.

액체가 부분적으로 채워져 있는 용기를 고속으로 이송시키면 슬로싱이 발생하므로 신속한 이송 및 조정 안정성을 위해 슬로싱을 억제할 필요가 있다. 본 연구에서는 사각용기를 수평방향으로 이송시킬 때 삼각형 속도 프로파일의 가속도 크기와 가감속 시간이 슬로싱에 미치는 영향을 수치해석적으로 연구하였다. 선행연구에서는 슬로싱의 1차 모드만을 고려하여 용기의 가감속 시간이 1차 고유 주기와 일치할 때 슬로싱이 상당히 억제됨을 보고한 바 있다. 반면 본 연구에서는 CFD 해석을 통해 슬로싱이 최소가 되는 가감속 시간을 찾고, 1차 모드 이외에 고차 모드를 함께 고려하여 이를 설명하였다. 또한, 질량과 스프링에 기반한 등가 모델을 이용한 해석을 수행하고 CFD 결과와 비교함으로써, 등가 모델의 정확성을 평가하였다.

Keywords

References

  1. Ibrahim, R. A., 2005, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press.
  2. Rebouillat, S. and Liksonov, D., 2010, "Fluid-Structure Interaction in Partially Filled Liquid Containers: A Comparative Review of Numerical Approaches," Computer & Fluids, Vol. 39, No. 5, pp. 739-746. https://doi.org/10.1016/j.compfluid.2009.12.010
  3. Kim, D., Hong, S.-W. and Kim, K., 2011, "Input Shaping for Control of Liquid Sloshing," Journal of KSPE, Vol. 28, No. 9, pp. 1018-1024.
  4. Frandsen, J. B. and Borthwick, A. G. L, 2004, "Simulation of Sloshing Motions in Fixed and Vertically Excited Containers Using a 2-D Inviscid -Tranformed Finite Difference Solver," J. Fluids Struct., Vol. 18, No. 2, pp. 197-214. https://doi.org/10.1016/j.jfluidstructs.2003.07.004
  5. Cho, J. R. and Lee, H. W., 2004, "Numerical Study on Liquid Sloshing in Baffled Tank by Nonlinear Finite Element Method," Comput. Methods Appl. Mech. Engrg., Vol. 193, No. 23-26, pp. 2581-2598. https://doi.org/10.1016/j.cma.2004.01.009
  6. Kim, D., 2016, "Numerical Study on Effects of Velocity Profile of Liquid Container on Sloshing," Trans. Korean Soc. Mech. Eng. B, Vol. 40, No. 5, pp. 313-319. https://doi.org/10.3795/KSME-B.2016.40.5.313
  7. Terashima, K. and Yano, K., 2001, "Slosh Analysis and Suppression Control of Tilting-Type Automatic Pouring Machine," Control Eng. Pract., Vol. 9, No. 6, pp. 607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
  8. Hubinsky, P. and Pospiech, T., 2010, "Slosh- Free Positioning of Containers with Liquids and Flexible Conveyor Belt," J. Elec. Eng., Vol. 61, No. 2, pp. 65-74. https://doi.org/10.2478/v10187-010-0010-y
  9. Pridgen, B., Bai, K. and Singhose, W., 2013, "Shaping Container Motion for Multimode and Robust Slosh Suppression," J. Spacecraft Rockets, Vol. 50, No. 2, pp. 440-448. https://doi.org/10.2514/1.A32137
  10. Chen, B.-F. and Nokes, R., 2005, "Time-independent Finite Difference Analysis of Fully Non-linear and Viscous Fluid Sloshing in a Rectangular Tank," Vol. 209, pp. 47-81. https://doi.org/10.1016/j.jcp.2005.03.006
  11. Akyildiz, H. and Unal, N. E., 2006, "Sloshing in a Three-dimensional Rectangular Tank: Numerical Simulation and Experimental Validation," Ocean Eng., Vol. 33, pp. 2135-2149. https://doi.org/10.1016/j.oceaneng.2005.11.001
  12. Liu, D. and Lin, P., 2008, "A Numerical Study of Three-dimensional Liquid Sloshing in Tanks," J. Comput. Phys., Vol. 227, pp. 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006